首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
一般工业技术   1篇
原子能技术   4篇
  1999年   2篇
  1998年   3篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
1.IntroductionInordertooptimizetokamakandachievehighperformanceplasmasuchashighcentraldensityandtemperature,goodcoreconfinementetc.,thesimultaneouscontroloftheedgeplasmaandcentraloneiscrucial.Therefore,themeasurementandcontroloftheedgeplajsmaparametersareverysignificanttocentralplasma.EdgeparameterssuchaStheedgedensity,temperatureandspacepotentialareusuallymeasuredbyusingLangmuirprobes.Duetotheprobemeasurementwithhightemporalandspa-tialresolution[1],itcanalsobeusedtoinvestigatetheirfluctuatio…  相似文献   
2.
HL-1M装置边缘扰动和流速的实验研究   总被引:2,自引:0,他引:2  
利用一组马赫探针研究HL-1M装置刮离层和边缘等离子体流在欧姆放电、壁硼化、偏压抽气孔栏、偏压电极、低混杂波电流驱动、电子回旋共振加热、弹丸注入、分子束注入、激光吹气和补充送气等情况下的平行流马赫数、离子饱和电流扰动、平行流速度剪切和极向流速度的分布。实验中发现局部等离子体电位快速变化,改变了电场分布,改变了边缘等离子体的流速和方向。从而改善了等离子体约束性能。  相似文献   
3.
边缘和芯部等离子体的同时控制对优化托卡马克等离子体性能是重要的。边缘等离子体密度、温度和空间电位等通常采用朗缪尔静电探针测量,而旋转速度可用马赫探针测量。好的加料技术对于获得高性能等离子体也很重要,在HL-1M装置上已开展了8发弹丸注入和分子束注入(MBI)加料实验,它能使等离子体产生中空的温度和电流密度分布,并容易获得高密度和良好的约束。本文主要介绍在低杂波电流驱动(LHCD)、多发弹丸注入和MBI三种典型放电中边缘等离子体参数的测量结果。  相似文献   
4.
一种新的气体加料方法——分子束注入,在HL-1M装置上进行了实验。脉冲高速分子束是由高压气体通过拉瓦尔(Laval)喷口形成的。准直的氢分子束平均速度约为500m·s~(-1)。一个分子束脉冲通过拉瓦尔喷口进入真空室的粒子数为6×10~(19)个。一系列氦分子束脉冲注入HL-1M低密度((?)=4×10~(18)m~(-3))氢等离子体,氦粒子穿透深度可达到12cm,电子密度上升率达到3.1×10~(-20)m~(-3)·s~(-1)而始终保持稳态,密度峰值为5.6×10~(19)m~(-3)。在氦分子束脉冲注入后100ms,电子密度剖面峰化因子达到最大值Q_n=n_e(O)/〈n_e〉=1.51,其中,n_e(O)为中心密度,〈n_e〉为体平均密度。由反磁测量得出能量约束时间τ_E为28ms,较在相同运行条件下常规喷气加料高30%。分子束加料τ_E的改善和Q_n值的增加可与HL-1M装置的小弹丸注入和ASDEX装置[Kaufmann M et al,Nucl.Fusion 28(1988)827]的低速弹丸注入结果相比拟。除了氦的同位素效应之外,粒子注入的深度引起密度剖面峰化是约束改善的重要因素。因为在HL-1M装置常规喷气加料的Q_n值仅为1.4。分子束加料后的粒子约束时间比加料前高6倍。  相似文献   
5.
为了提高等离子体温度和密度,在高参数下从事托卡马克等离子体物理研究,在HL-1M装置上进行低杂波加热和电子回旋波加热的基础上,我们最近开展了离子回旋波注入和中性束注入加热实验,以及弹丸注入加料和分子束注入(MBI)加料实验,特别是在后者的实验中获得了很高的粒子和能量约束时间。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号