首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2160篇
  免费   165篇
  国内免费   2篇
电工技术   17篇
化学工业   613篇
金属工艺   38篇
机械仪表   74篇
建筑科学   72篇
矿业工程   3篇
能源动力   100篇
轻工业   377篇
水利工程   25篇
石油天然气   21篇
无线电   110篇
一般工业技术   366篇
冶金工业   126篇
原子能技术   8篇
自动化技术   377篇
  2024年   17篇
  2023年   37篇
  2022年   64篇
  2021年   119篇
  2020年   90篇
  2019年   101篇
  2018年   108篇
  2017年   93篇
  2016年   105篇
  2015年   70篇
  2014年   103篇
  2013年   180篇
  2012年   134篇
  2011年   169篇
  2010年   148篇
  2009年   141篇
  2008年   97篇
  2007年   89篇
  2006年   71篇
  2005年   43篇
  2004年   44篇
  2003年   36篇
  2002年   25篇
  2001年   14篇
  2000年   23篇
  1999年   16篇
  1998年   36篇
  1997年   34篇
  1996年   19篇
  1995年   17篇
  1994年   12篇
  1993年   8篇
  1992年   11篇
  1991年   2篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1985年   4篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1961年   1篇
排序方式: 共有2327条查询结果,搜索用时 15 毫秒
1.
2.
Studies related to biomaterials that stimulate the repair of living tissue have increased considerably, improving the quality of many people's lives that require surgery due to traumatic accidents, bone diseases, bone defects, and reconstructions. Among these biomaterials, bioceramics and bioactive glasses (BGs) have proved to be suitable for coating materials, cement, scaffolds, and nanoparticles, once they present good biocompatibility and degradability, able to generate osteoconduction on the surrounding tissue. However, the role of biomaterials in hard tissue engineering is not restricted to a structural replacement or for guiding tissue regeneration. Nowadays, it is expected that biomaterials develop a multifunctional role when implanted, orchestrating the process of tissue regeneration and providing to the body the capacity to heal itself. In this way, the incorporation of specific metal ions in bioceramics and BGs structure, including magnesium, silver, strontium, lithium, copper, iron, zinc, cobalt, and manganese are currently receiving enhanced interest as biomaterials for biomedical applications. When an ion is incorporated into the bioceramic structure, a new category of material is created, which has several unique properties that overcome the disadvantages of primitive material and favors its use in different biomedical applications. The doping can enhance handling properties, angiogenic and osteogenic performance, and antimicrobial activity. Therefore, this review aims to summarize the effect of selected metal ion dopants into bioceramics and silicate-based BGs in bone tissue engineering. Furthermore, new applications for doped bioceramics and BGs are highlighted, including cancer treatment and drug delivery.  相似文献   
3.
Alcohol-free beer with isotonic properties is getting more popular and its production can be carried out by different production strategies; however, interrupted fermentation is still a challenge. Therefore, the objective of this study was to develop a low-alcohol isotonic beer (<0.5% v/v) by interrupted fermentation. Moreover, the major objective is to compare the developed product to commercial beverages (sports drinks, ‘Pilsen' regular beer, alcohol-free beers and low-alcohol isotonic beer). The beverages were evaluated based on pH, alcohol content (% v/v), total titratable acidity (mEq L−1), osmolality (mOsmol kg−1), bitterness International Bitterness Units, colour European Brewery Convention, total phenolic compounds (mg L−1 gallic acid), reducing and total sugars (%) and Na and K contents (mg L−1). The developed low-alcohol isotonic beer presented characteristics similar to sports drinks, with the advantage of being richer in phenolic compounds and suitable osmolality. Despite salts were added in its formulation, the grades attributed to all beers employed in the sensory evaluation, as well as the purchase intention did not present significant differences.  相似文献   
4.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   
5.
6.
Bile acids have been reported as important cofactors promoting human and murine norovirus (NoV) infections in cell culture. The underlying mechanisms are not resolved. Through the use of chemical shift perturbation (CSP) NMR experiments, we identified a low-affinity bile acid binding site of a human GII.4 NoV strain. Long-timescale MD simulations reveal the formation of a ligand-accessible binding pocket of flexible shape, allowing the formation of stable viral coat protein–bile acid complexes in agreement with experimental CSP data. CSP NMR experiments also show that this mode of bile acid binding has a minor influence on the binding of histo-blood group antigens and vice versa. STD NMR experiments probing the binding of bile acids to virus-like particles of seven different strains suggest that low-affinity bile acid binding is a common feature of human NoV and should therefore be important for understanding the role of bile acids as cofactors in NoV infection.  相似文献   
7.
In this work was investigated the effect of the addition of barium titanate (BaTiO3) on electrical properties of two chemically recyclable thermosets, polyhemiaminal (PHA) and polyhexahydro‐s‐triazine (PHT), both fabricated from 4,4′‐oxydianiline (ODA), an ether derivative of aniline and paraformaldehyde. Thermal and mechanical properties as well as chemical recyclability of the two polymers and their nanocomposites/nanodielectrics were also investigated. In addition, a quantitative analysis was conducted of the nanoparticle dispersion in the PHA‐/PHT‐based BaTiO3‐containing nanocomposites using transmission electron microscopy imaging and the nearest‐neighbor distance index and this index was used to analyze the investigated properties in connection with the proper mechanisms. Regarding the electrical properties for both neat polymers, conductivity values of the order of 10?8 S m?1 at 100 Hz were observed and dielectric constant values close to 2.80 for both polymers at 1 kHz. The addition of 0.5 wt% of BaTiO3 ferroelectric nanoparticles increased by about 44% the dielectric constant (1 kHz) and conductivity (102 Hz) of the PHA‐based nanocomposite. PHA and PHT exhibited glass transition temperature (Tg) values in the range 125–180 °C. An increase of 7 °C in Tg was observed after the incorporation of 0.5 wt% of BaTiO3 into PHA. Concerning the mechanical properties, values in the range 4.00–4.45 GPa for reduced modulus and 0.30–0.43 GPa for nanohardness for PHA and PHT polymers were observed. Independently of filler content or polymer matrix, both mechanical properties were enhanced after the addition of BaTiO3. The chemical recycling of PHA/PHT and all nanocomposites in the initial ODA reagent after sulfuric acid treatment was successfully characterized using the NMR and Fourier transform infrared spectroscopic techniques. © 2018 Society of Chemical Industry  相似文献   
8.
9.
Neat poly (lactic acid) (PLA) and PLA/cassava bagasse (CB) composites were used to produce seedling tubes by extrusion and injection molding. The tubes were buried in simulated soil, and their biodegradation was investigated by weight loss, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). After 180 days, the composites' biodegradation was higher than neat PLA material, and the higher the CB content, the higher the biodegradation, which caused fissures and voids in the material. The biodegradation of PLA/CB composites increased the phosphorus content in the soil after 180 days. Composites of PLA with CB, an abundant agro-industrial residue in Brazil, are promising because they can reduce the environmental impact due to CB's proper destination, and the composites' costs and biodegradation are faster than pure PLA material. Both the faster biodegradation of the tube and the higher P content are advantageous for seedling tubes.  相似文献   
10.
This study investigates the preparation of polyetherimide (PEI) – LaNi5 composites films for hydrogen storage. Prior to the polymer addition, LaNi5 was ball-milled at different conditions (250, 350, and 450 RPM) and annealed at 500 °C for 1 h under vacuum. The composites were produced with BM-LaNi5-350 (PEI/LaNi5-350) and annealed BM-LaNi5-350 (PEI/LaNi5-350-TT). Membranes were successfully produced through solvent casting assisted by an ultrasonic bath. The particles dispersion and the film morphology did not change after hydrogenation cycles. In the H2 sorption experiments at 43 °C and 20 bar, the films stored H2 without incubation time; both samples reached a capacity of ~0.6 wt%. The H2 sorption kinetics of PEI/LaNi5-350 was comparable to that of BM-LaNi5-350, whereas PEI/LaNi5-350-TT presented significantly slower kinetics. LaNi5 oxidation was hindered by PEI, showing that it can be explored to improve metal hydrides air resistance. The results demonstrated that PEI films filled with LaNi5 are promising materials for hydrogen storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号