首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   8篇
化学工业   26篇
金属工艺   1篇
能源动力   14篇
轻工业   4篇
一般工业技术   6篇
原子能技术   7篇
自动化技术   2篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   6篇
  2017年   8篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   1篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2002年   1篇
  2001年   2篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
In this paper we presented experimental investigation of effects of local limiter biasing (Vbiasing = +200 v, Vbiasing = +320 v) on the plasma parameters as plasma current, loop voltage, poloidal beta, plasma pressure, plasma energy, plasma resistance, plasma temperature, plasma displacement, Shafranov parameter and plasma internal inductance in IR-T1 tokamak. For these purposes, array of magnetic probes and also a diamagnetic loop have been used. The results show that applied biased voltage Vbiasing = +200 v causes to decrease of about 40 % in plasma internal inductance. The plasma resistance and the plasma displacement have been decreased by Vbiasing = +200 v. The main result of the application of Vbiasing = +200 v is flatting the plasma parameters profiles. In other words, the addition of biasing voltage Vbiasing = +200 v to plasma could be effective for improving the quality of tokamak plasma discharge by creating the steady state plasma. The plasma current, plasma pressure, plasma energy, plasma temperature and shift parameter have increased after the application of limiter biasing with Vbiasing = +320 v but they decrease rapidly.  相似文献   
2.
The time-resolved frequency component analysis has been performed using short time Fourier transform. Fourier-based techniques and auto-correlation have been employed to analyze the frequency of the MHD fluctuations. The time evolution of potential fluctuation, and electric field and turbulent transport have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. The experiments have been done in different regimes as Limiter biasing and RHF and both of them. The analyses have been done by the fast Fourier transport (FFT) method and spectral features of them are obtained with the help of the standard auto-correlation technique. The results show that radial turbulent transport decreases about 60 % after positive biasing application while it increases about 40 % after negative biasing. The effect of positive biasing on poloidal turbulent transport displays an increase of about 55 % while the negative bias voltage decreases the poloidal turbulent transport about 30 %. Consequently, confinement is improved and plasma density rises significantly due to the applied positive biasing in IR-T1. But the results are reversed when negative biasing is applied. Also, in this work, the results of applied RHF (L = 3) are compared with biasing results and analysed.  相似文献   
3.
E × B velocity shear effects on the plasma confinement were investigated in the IR-T1 tokamak. The investigations have been done at the presence of external applied electric and Resonant Helical magnetic Fields (RHF). In this work, experimental data have been measured by using two arrays of the Langmuir probes in both the radial and poloidal directions. A velocity shear stabilization mechanism has also been proposed to be responsible for an improvement in plasma confinement. The results show that Er × B drift velocity (VE×B) reduces about 90 % due to applied biasing and RHF at edge plasma. We have also observed that positive biasing and RHF lead to a significant decrease (>80 %) for radial turbulent transport (ΓE×B) at edge plasma. In this paper, the electrostatic Reynolds stress (Rs) and the shearing rate γE×B have been calculated. We have also compared the Rs and γE×B at presence of the biasing and RHF and without biasing and RHF. A good correlation between confinement modifications and Er × B velocity shear has been found suggesting that confinement enhancement originates at the edge plasma as a consequence of the formation of a particle transport barrier just inside the limiter.  相似文献   
4.
Mesoporous nanocrystalline nickel-alumina promoted catalysts with high surface area were prepared by microemulsion (ME) method and employed in dry reforming of methane reaction. The catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller surface area analysis (BET), temperature programmed reduction (TPR) and temperature programmed oxidation (TPO) techniques. The results showed that the prepared catalysts had high porosity with great surface area and small crystallite size. Among the K2O, MgO, CaO and BaO promoters, the MgO promoter showed considerable effect on catalytic performance and coke suppression of catalyst.  相似文献   
5.
In the present work, benzyl triethanol ammonium chloride (BTEAC) was employed as a reactive bactericidal additive for preparing of polyurethane coatings. In this regard, castor oil as a renewable resource-based polyol, polyethylene glycol (PEG1000), and BTEAC were reacted with toluene diisocyanate. Physical, mechanical, and thermal characteristics as well as biocompatibility and antibacterial properties of polyurethanes were evaluated. The prepared polyurethanes showed two-phase structure with soft and hard segments glass transition temperature transitions in the range of 18–70 and 85–153 °C, respectively. Initial modulus and tensile strength were improved for coatings with higher BTEAC content, while elongation at break and thermal stability were decreased. Hydrophilicity of coatings was increased for polyurethanes based on higher content of BTEAC and PEG1000. Polyurethanes with higher BTEAC content showed better cytocompatibility for mouse L929 fibroblast cells. Moreover, coatings with higher hydrophilicity and BTEAC content displayed superior antibacterial activity against both Escherichia coli and Staphylococcus aureus bacteria.  相似文献   
6.
Nickel catalysts supported on mesoporous nanocrystalline gamma alumina with various nickel loadings were prepared and employed for thermocatalytic decomposition of methane into CO x -free hydrogen and carbon nanofibers. The prepared catalysts with different nickel contents exhibited mesoporous structure with high surface area in the range of 121.3 to 66.2m2g?1. Increasing in nickel content decreased the pore volume and increased the crystallite size. The catalytic results revealed that the nickel content and operating temperature both play important roles on the catalytic performance of the prepared catalysts. The results showed that increasing in reaction temperature increased the initial conversion of catalysts and significantly decreased the catalyst lifetime. Scanning electron microscopy (SEM) analysis of the spent catalysts evaluated at different temperatures revealed the formation of intertwined carbon filaments. The results showed that increasing in reaction temperature decreased the diameters of nanofibers and increased the formation of encapsulating carbon.  相似文献   
7.
An efficient palladium nanoparticles-catalyzed N-arylation of sulfonamides and sulfonyl azides is described. This procedure serves as an active protocol for intermolecular C–N bond formation using Pd(OAc)2 in PEG-400 under air. Aryl bromides and triflates react at 35°C, while aryl chlorides require heating to 50°C and give the desired products only in low yields. This reaction proceeds smoothly in acceptable yields using low catalyst loading.  相似文献   
8.
9.
Thermocatalytic decomposition of CH4 is an interesting method for the production of hydrogen. In this article, the catalytic and structural properties of the La, Ce, Co, Fe, and Cu-promoted Ni/MgO·Al2O3 catalysts were investigated in the thermal decomposition of CH4. Mesoporous MgO·Al2O3 powder with the high BET area (>250 m2/g) was synthesized by a novel and simple sol–gel method. The different instrumental methods (XRD, BET, SEM, H2-TPR and TPO) were used for evaluating the physicochemical characteristics of the samples. The addition of Cu to Ni/MgO·Al2O3 dramatically improved the catalytic performance and the Cu-promoted catalysts exhibited the highest CH4 conversion and H2 yields among the promoted and unpromoted catalysts. The Cu-promoted catalyst possessed the highest stability in CH4 conversion during 10 h of reaction. The results also indicated that the Ni–Cu/MgO·Al2O3 catalyst with 15 wt.% Cu showed the highest catalytic activity and stability at higher temperatures (>80% CH4 conversion).  相似文献   
10.
A new Cu2+ carbon paste electrode (CPE) using 2,2′-(1E,1′E)-1,1′-(2,2′-azanediylbis (ethane-2,1-diyl)bis(azan-1-yl-1-ylidene))bis(ethan-1-yl-1-ylidene)diphenol (ADEZEDP) has been prepared. The influence of variables including sodium tetraphenylborate (NaTPB), ionophore, and amount of multiwalled carbon nanotubes (MWCNT), CdO nanowires, CdS nanoparticles and palladium nanoparticles loaded on ADEZEDP and Nujol on the electrodes response were studied and optimized. At optimum values of all variables, for each nanomaterial the electrode response was linear in concentration range of 1.0 × 10? 8 to 1.0 × 10? 1 mol L? 1 for ADEZEDP with Nernstian slope. The good performance of electrode viz. Wide applicable pH range (2.0–5.0), fast response time (≈ 6 s), and adequate life time (3 months) indicate the utility of the proposed electrodes for evaluation of Cu2+ ion content in various situations. Finally, these electrodes have been successfully applied for the determination of Cu2+ ions content in various real samples. The selectivity of proposed electrode was evaluated by separation solution method and fixed interference method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号