首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   3篇
电工技术   1篇
化学工业   8篇
金属工艺   1篇
能源动力   7篇
一般工业技术   13篇
原子能技术   2篇
自动化技术   2篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   4篇
  2013年   1篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有34条查询结果,搜索用时 31 毫秒
1.
In this research, near fully dense single phase bulk multicomponent transition metal nitride (Nb1/3Ta1/3Ti1/3)N1−δ has been successfully synthesized from mixed commercial powders of NbN, TaN and TiN via reaction flash sintering technique. This was performed with an applied pressure of ~ 35 MPa at 25°C under a constant DC electric field (~24-32 V/cm). The flash event, which is the abrupt increase in current (up to ~ 25.2 A/mm2) and temperature, occurred without preheating. The threshold power dissipation on the sample right before the flash is ~ 0.7 W/mm3. The formation of single phase (Nb1/3Ta1/3Ti1/3)N1−δ random solid solution and its compositional uniformity were confirmed by XRD and EDS, respectively. The effects of ball milling duration and limiting current density on phase formation were studied. Simulation based on Joule heating provides an estimate of the ultimate sample temperature of ~ 1850°C. Vickers hardness of the obtained (Nb1/3Ta1/3Ti1/3)N1−δ is 17.6 ± 0.6 GPa, which is comparable to similarly flash sintered ingredient binary nitrides of TaN and NbN. TGA in air shows that the oxidation resistance of (Nb1/3Ta1/3Ti1/3)N1−δ is better than that of TaN and NbN but inferior to TiN. The study demonstrates that reaction flash sintering can be a highly efficient technique for synthesizing bulk multicomponent ceramics for both material fundamental investigations and application development.  相似文献   
2.
Mg2FeH6 was synthesized by ball milling MgH2 and Fe (2:1 molar ratio) mixture for 72 h followed by heating at 400 °C under H2 pressure. The hydride formation, its structure and homogeneity were investigated by scanning electron microscopy, X-ray diffraction, transmission electron microscopy and Raman spectroscopy. High pressure in situ synchrotron X-ray diffraction and Vienna ab initio simulation were used to determine bulk modulus of the sample. The bulk modulus of Mg2FeH6 was found to be 75.4(4) GPa by optimized experiment and 76.3 GPa by theoretical simulation. From high temperature in situ X-ray diffraction study the volumetric thermal expansion coefficient of Mg2FeH6 was found to be αv = 5.85(3) × 10−5 + 7.47(7) × 10−8 (T − To)/°C. Decomposition of Mg2FeH6 was observed at 425 °C and the decomposition products were Mg, Fe and H2.  相似文献   
3.
We describe the application of a local discontinuous Galerkin method to the numerical solution of the three-dimensional shallow water equations. The shallow water equations are used to model surface water flows where the hydrostatic pressure assumption is valid. The authors recently developed a DG\linebreak method for the depth-integrated shallow water equations. The method described here is an extension of these ideas to non-depth-integrated models. The method and its implementation are discussed, followed by numerical examples on several test problems.This revised version was published online in July 2005 with corrected volume and issue numbers.  相似文献   
4.
Mn+1AXn compounds have gathered huge momentum because of its exciting properties. In this paper we report the synthesis of ternary layered ceramic Cr2GeC, a 211 Mn+1AXn compound by hot-pressing. Scanning electron microscopy and X-ray diffraction have been employed to characterize the new synthesized phase. High-pressure compressibility of Cr2GeC were measured using diamond anvil cell and synchrotron radiation at room temperature up to 48 GPa. No phase transformation was observed in the experimental pressure range. The bulk modulus of Cr2GeC calculated using the Birch–Murnaghan equation of state is 169 ± 3 GPa, with K′ = 3.05 ± 0.15.  相似文献   
5.
6.
The cantilever dynamics in single-frequency scanning probe microscopy (SPM) are undefined due to having only two output variables, which leads to poorly understood image contrast. To address this shortcoming, generalized phase imaging scanning probe microscopy (GP-SPM), based on broad band detection and multi-eigenmode operation, is developed and demonstrated on diamond nanoparticles with different functionalization layers. It is shown that rich information on tip-surface interactions can be acquired by separating the response amplitude, instant resonance frequency, and quality factor. The obtained data allow high-resolution imaging even in the ambient environment. By tuning the strength of tip-surface interaction, different surface functionalizations can be discerned.  相似文献   
7.
This paper is aimed to show the influence of initial chemical pretreatment prior to subsequent plasma activation of aluminum surfaces.The results of our study showed that the state of the topmost surface layer(i.e.the surface morphology and chemical groups)of plasma modified aluminum significantly depends on the chemical precleaning.Commonly used chemicals(isopropanol,trichlorethane,solution of Na OH in deionized water)were used as precleaning agents.The plasma treatments were done using a radio frequency driven atmospheric pressure plasma pencil developed at Masaryk University,which operates in Ar,Ar/O2 gas mixtures.The effectiveness of the plasma treatment was estimated by the wettability measurements,showing high wettability improvement already after 0.3 s treatment.The effects of surface cleaning(hydrocarbon removal),surface oxidation and activation(generation of OH groups)were estimated using infrared spectroscopy.The changes in the surface morphology were measured using scanning electron microscopy.Optical emission spectroscopy measurements in the near-to-surface region with temperature calculations showed that plasma itself depends on the sample precleaning procedure.  相似文献   
8.
This paper presents the results of aluminum surface treatment by diffuse coplanar surface barrier discharge. The goals are to study the effectiveness of the plasma treatment and the dependence of its efficiency on operation parameters, such as sample-to-electrode distance, treatment time or gas atmosphere. Three types of aluminum materials (bricks, sheets and thin films) were tested to ensure the reliability of the treatment. The changes in the surface properties were characterized by the surface free energy, atomic force microscopy, attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR) and X-ray photoelectron spec- troscopy (XPS). The influence of aging effect on the treatment was also measured and discussed.  相似文献   
9.
Introduction: Three-dimensional bioprinting can be considered as an advancement of the classical tissue engineering concept. For bioprinting, cells have to be dispersed in hydrogels. Recently, a novel semi-synthetic thiolene hydrogel system based on norbornene-functionalized gelatin (GelNB) and thiolated gelatin (GelS) was described that resulted in the photoclick hydrogel GelNB/GelS. In this study, we evaluated the printability and biocompatibility of this hydrogel system towards adipose-tissue-derived mesenchymal stem cells (ASCs). Methods: GelNB/GelS was synthesized with three different crosslinking densities (low, medium and high), resulting in different mechanical properties with moduli of elasticity between 206 Pa and 1383 Pa. These hydrogels were tested for their biocompatibility towards ASCs in terms of their viability, proliferation and differentiation. The extrusion-based bioprinting of ASCs in GelNB/GelS-high was performed to manufacture three-dimensional cubic constructs. Results: All three hydrogels supported the viability, proliferation and chondrogenic differentiation of ASCs to a similar extent. The adipogenic differentiation of ASCs was better supported by the softer hydrogel (GelNB/GelS-low), whereas the osteogenic differentiation was more pronounced in the harder hydrogel (GelNB/GelS-high), indicating that the differentiation fate of ASCs can be influenced via the adaption of the mechanical properties of the GelNB/GelS system. After the ex vivo chondrogenic differentiation and subcutaneous implantation of the bioprinted construct into immunocompromised mice, the production of negatively charged sulfated proteoglycans could be observed with only minimal inflammatory signs in the implanted material. Conclusions: Our results indicate that the GelNB/GelS hydrogels are very well suited for the bioprinting of ASCs and may represent attractive hydrogels for subsequent in vivo tissue engineering applications.  相似文献   
10.
The steam–methane‐reformation (SMR) reaction has been modified by including sodium hydroxide in the reaction. It is found that the reaction: 2NaOH+CH4+H2O = Na2CO3+4H2 takes place at much lower temperatures (300–600°C) than the SMR reaction (800–1200°C). The reaction rate is enhanced with a nickel catalyst. We have studied the effect of variously ball‐milled nickel on the reaction rate and determined the optimum particle size of the catalyst. Best results were achieved by grinding the catalyst for 2 h. Prolonged ball milling caused the nickel platelets to coalesce and grow in size decreasing the reaction rate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号