首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
能源动力   1篇
原子能技术   1篇
  2016年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The effects of evaluated nuclear data files on neutronics characteristics of a fusion–fission hybrid reactor have been analyzed; three-dimensional calculations have been made using the MCNP4C Monte Carlo Code for ENDF/B-VII T = 300 K, JEFF-3.0 T = 300 K, and CENDL-2 T = 300 K evaluated nuclear data files. The nuclear parameters of a fusion–fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, fissile fuel breeding and nuclear heating in a first wall, blanket and shield have been investigated for the mixture components of 90% Flibe (Li2BeF4) and 10% UF4 for a blanket layer thickness of 50 cm. The contributions of each isotope of Flibe (6Li, 7Li, 19F, 9Be) and UF4 (235U, 238U) to the integrated parameter values were calculated. The neutron wall load is assumed to be 10 MW/m2.  相似文献   
2.
Spent nuclear fuel out of conventional light water reactors contains significant amount of even plutonium isotopes, so called reactor grade plutonium. Excellent neutron economy of Canada deuterium uranium (CANDU) reactors can further burn reactor grade plutonium, which has been used as a booster fissile fuel material in form of mixed ThO2/PuO2 fuel in a CANDU fuel bundle in order to assure reactor criticality. The paper investigates incineration of nuclear waste and the prospects of exploitation of rich world thorium reserves in CANDU reactors. In the present work, the criticality calculations have been performed with 3‐D geometrical modeling of a CANDU reactor, where the structure of all fuel rods and bundles is represented individually. In the course of time calculations, nuclear transformation and radioactive decay of all actinide elements as well as fission products are considered. Four different fuel compositions have been selected for investigations: ① 95% thoria (ThO2) + 5% PuO2, ② 90% ThO2 + 10% PuO2, ③ 85% ThO2 + 15% PuO2 and ④ 80% ThO2 + 20% PuO2. The latter is used for the purpose of denaturing the new 233U fuel with 238U. The behavior of the criticality k and the burnup values of the reactor have been pursued by full power operation for ~10 years. Among the investigated four modes, 90% ThO2 + 10% PuO2 seems a reasonable choice. This mixed fuel would continue make possible extensive exploitation of thorium resources with respect to reactor criticality. Reactor will run with the same fuel charge for ~7 years and allow a fuel burnup ~55 GWd/t. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号