首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   3篇
机械仪表   2篇
无线电   4篇
自动化技术   2篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
提出基于计算流体力学方法的直接甲醇燃料电池阳极的三维模型,并模拟了液体燃料供给的平行沟道流场结构直接甲醇燃料电池的性能.该模型考虑直接甲醇燃料电池阳极燃料的质量传输,特别是多孔介质对于燃料输运的影响,根据燃料质量传输性质,求出直接甲醇燃料电池的输出电压、平均电流密度等电性能.对不同输入燃料浓度的直接甲醇燃料电池性能进行模拟,得到的模拟结果与实验规律一致,输入燃料浓度的增加将使直接甲醇燃料电池的极限输出电流密度成比例增加.  相似文献   
2.
研究了面向微型燃料电池膜电极的多孔硅薄膜的制备工艺.多孔硅刻蚀工艺高效便宜,与标准CMOS工艺兼容.通过选择不同的衬底掺杂浓度和适当的电解液浓度能控制纳米(或微米)级多孔硅的孔径大小,得到适用于膜电极的纳米级孔径的多孔硅薄膜,证实了纳米级多孔硅可用于硅微燃料电池中膜电极的可能性.  相似文献   
3.
硅基微型直接甲醇燃料电池的研究   总被引:2,自引:0,他引:2  
设计了一种基于MEMS技术的硅基微型直接甲醇燃料电池(DMFC),采用流体力学软件进行了DMFC三维阳极模型的模拟,〖JP2〗利用MEMS加工技术和PDMS封装工艺实现了这种燃料电池,并在室温下对有效面积为8600μm×8600μm的电池样品进行了性能测试.测试得到该DMFC的开路输出电压为0.5V,短路工作电流密度达到78.1mA/cm2,最大输出功率密度为3.86mW/cm2.主要参数已达到了一些电子器件的要求,具有一定的实用价值.  相似文献   
4.
在分析了PDMS应用优势的基础上,介绍了一种基于PDMS的封装技术,将此技术应用于硅基直接甲醇燃料电池的制作中,并对电池性能进行了测试。实验表明,PDMS封装技术能够有效解决封装的密封性、燃料输运导管固定、电池组件间的接触性等问题,并具有长期可靠性。应用PDMS封装技术的微型直接甲醇燃料电池性能优良,可以驱动一些低功率电子器件和MEMS器件。  相似文献   
5.
在体积微型化条件下,极板流场图形的设计对燃料电池的性能优化,尤其是提高面积比功率,具有极其重要的意义.本文设计了不同沟道和沟脊宽度的阳极极板,测试了相应微型自吸氧燃料电池的性能变化.实验结果表明,在沟脊宽度小于沟道宽度的条件下,增加沟道或沟脊宽度都能改善微型燃料电池的性能,但改善幅度随宽度增加而趋缓.当沟道和沟脊宽度等比例变化时,性能随宽度的增加的最优值为600μm,其性能达到了2.87 mW/cm2,优于沟道和沟脊均为400μm和800μm的燃料电池的性能.  相似文献   
6.
基于MEMS技术的微型燃料电池的制作   总被引:3,自引:0,他引:3  
提出一套基于MEMS加工技术和薄膜淀积技术的硅基微型直接甲醇燃料电池的制作工艺流程。该微型燃料电池采用KOH体硅腐蚀技术得到流体通道,并溅射金属Pt层作为收集电流的电极。采用PDMS将两块带有微通道的燃料电池硅片与涂有催化剂层的质子交换膜密封粘合。制作得到的微型燃料电池单元的流道有效尺寸为:8 6mm×8 6mm。室温常压下,单电池的开路输出电压为0 4V左右。当输出电压为0 21V时,达到最大输出功率15 6μW(21 1μW/cm2)。  相似文献   
7.
报道了一种利用MEMS技术制作的微型直接甲醇燃料电池.其特点在于,利用KOH体硅腐蚀和双面光刻工艺制作了一种独特的三维自吸氧阴极结构.分析了MEMS制作工艺的改进.实验结果表明,该电池室温下产生了2.52mW/cm2的最大功率.此性能好于国外报道的同类基于MEMS技术制作的被动式微型直接甲醇燃料电池,并同本课题组之前报道的需使用外部泵的主动式微型直接甲醇燃料电池性能相当,证明了文中提出的新结构的可行性.  相似文献   
8.
设计了一种基于MEMS技术的硅基微型直接甲醇燃料电池(DMFC),采用流体力学软件进行了DMFC三维阳极模型的模拟,利用MEMS加工技术和PDMS封装工艺实现了这种燃料电池,并在室温下对有效面积为8600μm× 8600μm的电池样品进行了性能测试.测试得到该DMFC的开路输出电压为0.5V,短路工作电流密度达到78.1mA/cm2,最大输出功率密度为3.86mW/cm2.主要参数已达到了一些电子器件的要求,具有一定的实用价值.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号