首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
自动化技术   2篇
  2024年   1篇
  2023年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
针对灰狼优化(GWO)算法在求解复杂优化问题时存在后期收敛速度慢、易陷入局部最优的不足,提出了一种渐进式分组狩猎的灰狼优化(PGGWO)算法。首先,设计了非线性多收敛因子以增强全局勘探能力、避免局部最优;其次,提出了渐进式位置更新策略,该策略引入长鼻浣熊的包围策略和动态权重因子,前者在提高收敛精度和速度的同时避免局部最优,后者则动态地提升算法的收敛速度及全局寻优性能。最后,通过与标准GWO、4个GWO先进变体以及4个竞争力较强的新型进化算法对比,验证了PGGWO算法的有效性和先进性。在24个Benchmark函数和3个实际工程优化问题上的实验结果表明,PGGWO算法在收敛精度和收敛速度上具有明显优势,并且对约束优化问题也是有效的。  相似文献   
2.
传统差分进化(DE)算法在迭代过程中不能充分平衡全局勘探与局部开发,存在易陷入局部最优、求解精度低、收敛速度慢等缺点。为提升算法性能,提出一种基于随机邻域变异和趋优反向学习的差分进化(RNODE)算法并对其进行复杂度分析。首先,为种群中每个个体生成随机邻域,用全局最佳个体引导邻域最佳个体生成复合基向量,结合控制参数自适应更新机制构成随机邻域变异策略,使算法在引导种群向最优方向趋近的同时保持一定的勘探能力;其次,为了进一步帮助算法跳出局部最优,对种群中较差个体执行趋优反向学习操作,扩大搜索区域;最后,将RNODE与九种算法进行对比以验证RNODE的有效性和先进性。在23个Benchmark函数和两个实际工程优化问题上的实验结果表明,RNODE算法收敛精度更高、速度更快、稳定性更优。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号