首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  国内免费   2篇
自动化技术   3篇
  2024年   1篇
  2023年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
基于无人机平台获取的地面影像有着较高的空间分辨率, 但提供丰富的细节信息的同时, 也为农作物分类带来很多“干扰”, 尤其是在利用深度模型进行作物识别时, 存在边缘信息提取不充分及相似纹理作物误分, 导致分类效果欠佳等问题. 因此, 通过多尺度注意力特征提取的思路构建模型, 有效提取边缘信息, 提高作物分类精度. 所提出的多尺度注意力模型 (multi-scale attention network, MSAT)通过多尺度块嵌入获取同一层级不同尺度的作物信息, 多尺度特征图被映射为多条序列独立地馈送到因子注意力模块中, 增强对农作物上下文信息的关注, 提高模型对地块边缘信息的提取, 因子注意力模块内置的卷积相对位置编码增强块内部局部信息的建模, 提高对相似纹理作物的区分能力, 最后通过融合局部特征与全局特征, 实现粗细双重信息的提取. 在水稻、甘蔗、玉米、香蕉和柑橘5种作物上的分类结果表明, MSAT模型的MIoU (mean intersection over union)和OA (overall accuracy)指标达0.816、98.10%, 验证了基于高分辨率图像的精细作物分类方法可行且设备成本低.  相似文献   
2.
近年来,卷积神经网络(convolutional neural networks,CNN)在农作物分类研究中不断取得新进展,但在建模长期依赖关系方面表现出一定的局限性,对农作物全局特征的捕获存在不足。针对以上问题,将Transformer引入Deeplab v3+模型,提出了一种用于无人机影像农作物分类的并行分支结构——DeepTrans(Deeplab v3+with Transformer)模型。DeepTrans以一种并行的方式将Transformer和CNN结合在一起,利于全局特征与局部特征的有效捕获。通过引入Transformer来增强图像中信息的远距离依赖关系,提高了作物全局信息的提取能力;加入通道注意力机制和空间注意力机制加强Transformer对通道信息的敏感度及ASPP(atrous spatial pyramid pooling)对作物空间信息捕获能力。实验结果表明,DeepTrans模型在MIoU指标上可达0.812,相较于Deeplab v3+模型提高了3.9%,该模型在五类作物的分类中精度均有提升,对于容易错分的甘蔗、玉米和香蕉三种作物,其IoU分别提高了2...  相似文献   
3.
高光谱图像波段多、波段之间关联性强, 但其空间纹理和几何信息的表达较弱, 传统分类模型存在空间光谱特征提取不充分、计算量大的问题, 分类性能有待提高. 针对此问题, 提出一种基于小波变换的多尺度多分辨率注意力特征融合卷积网络 (wavelet transform convolutional attention network, WTCAN), 采用小波变换思想对光谱波段进行4次分解, 通过层次性提取光谱特征可减少计算量. 该网络设计了空间信息提取模块, 同时引入金字塔注意力机制, 通过设计逆向跳跃连接网络结构利用多尺度获取空间位置特征, 增强空间纹理表达能力, 可以有效改进传统2D-CNN特征提取尺度单一、忽略空间纹理细节等缺陷. 本文对所提出的WTCAN模型分别在不同空间分辨率高光谱数据集Indian Pines (IP)、WHU_Hi_HanChuan (HanChuan)、WHU_Hi_HongHu (HongHu)进行实验, 通过对比SVM、2D-CNN、DBMA、DBDA、HybridSN模型效果, WTCAN模型取得较好的分类效果, 3个数据集的分类总体精度分别达到了98.41%、99.64%、99.67%, 可为高光谱图像的分类研究提供参考依据.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号