首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
自动化技术   2篇
  2021年   2篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
徐先峰  王世鑫  龚美  曹仰昱 《计算机仿真》2021,38(8):103-107,501
短期负荷预测在电力系统运行和调度中起着重要作用,为了更好地提取数据中蕴含的有效信息,提升短期负荷预测精度,本文引入Seq2seq算法的注意力机制提出了多层Bi-LSTM的Seq2seq深度学习模型(BL-Seq2seq)实现短期用电负荷预测.其中Seq2seq的编码端由多层Bi-LSTM组成,将输入数据进行编码,并在网络末端输出编码后的最终状态;Seq2seq解码端为单层LSTM,它将编码端的最终状态作为初始输入状态,同时每一步的输出值作为下一步的输入值.利用用电负荷实测数据,基于Keras平台进行仿真,仿真结果表明,与多个经典的深度学习的短期用电负荷预测模型相比,所提BL-Seq2seq模型的预测误差明显降低,大大提升了短期用电负荷预测精度.  相似文献   
2.
徐先峰  王世鑫  龚美  曹仰昱 《计算机仿真》2021,38(8):103-107,501
短期负荷预测在电力系统运行和调度中起着重要作用,为了更好地提取数据中蕴含的有效信息,提升短期负荷预测精度,本文引入Seq2seq算法的注意力机制提出了多层Bi-LSTM的Seq2seq深度学习模型(BL-Seq2seq)实现短期用电负荷预测.其中Seq2seq的编码端由多层Bi-LSTM组成,将输入数据进行编码,并在网络末端输出编码后的最终状态;Seq2seq解码端为单层LSTM,它将编码端的最终状态作为初始输入状态,同时每一步的输出值作为下一步的输入值.利用用电负荷实测数据,基于Keras平台进行仿真,仿真结果表明,与多个经典的深度学习的短期用电负荷预测模型相比,所提BL-Seq2seq模型的预测误差明显降低,大大提升了短期用电负荷预测精度.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号