首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   1篇
自动化技术   2篇
  2024年   1篇
  2023年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
与传统刚性驱动系统相比, 气动人工肌肉系统具有质量轻、人机交互友好等优势, 近年来在生产生活中受到广泛关注. 然而, 该类系统的运动呈现出复杂的迟滞特性, 这给针对该类系统的跟踪控制研究带来了挑战. 本文针对垂直气动人工肌肉系统, 提出一种模型参考自适应逆补偿控制策略, 可有效克服迟滞特性以及控制过程中外界扰动和参数摄动等不确定因素对系统运动状态的影响, 实现系统高精度跟踪控制. 具体而言, 本文首先对系统的运动特性以及影响系统控制精度的不确定因素进行分析; 然后, 基于分析结果建立一个描述系统运动特性的参考模型; 进而采用逆补偿思想, 通过对所建立的参考模型求逆来构造一个逆补偿控制器, 克服迟滞特性对系统运动状态产生的影响; 随后, 基于最小均方误差算法设计自适应律, 在线辨识参考模型的权值, 同时估计逆补偿控制器的设计参数, 克服外界扰动和参数摄动等不确定因素对系统运动状态的影响; 最后, 通过实验验证所提控制策略的有效性.  相似文献   
2.
针对一款具有波纹管外形的充气伸长型气动软体驱动器(简称“气动波纹管驱动器”),提出一种基于宽度学习系统的无模型跟踪控制方法,使该驱动器有效跟踪期望轨迹.首先,介绍气动波纹管驱动器结构,以及气动波纹管驱动器整体实验平台工作原理.根据驱动器实时位置信息提出一种基于宽度学习系统的跟踪控制方法,受PID跟踪控制方法中积分项作用的启发,所提出控制方法不仅采用系统跟踪误差作为宽度学习系统的输入之一,还将跟踪误差对时间的积分项作为另一输入以消除期望轨迹与实际轨迹间的恒定偏差.然后,采用宽度学习系统计算得到控制气压,同时,利用基于梯度下降法的学习律在线调整宽度学习系统权值,进而减小驱动器跟踪误差.最后,通过实验验证所提出方法的有效性.所提出方法无需建立驱动器模型,能够简化控制器设计步骤,且与深度神经网络控制方法相比,能在避免计算量过大的前提下实现较高的跟踪控制精度.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号