首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
  国内免费   1篇
电工技术   1篇
机械仪表   2篇
无线电   7篇
自动化技术   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2017年   3篇
  2016年   2篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
基片式FBG传感器封装结构在应变测试中受到广泛关注,尤其是在航空航天领域,其粘贴方式对监测飞机蒙皮应变具有重要意义。为了提高基片式封装结构的FBG测量飞机蒙皮应变精度,对薄板试验件粘贴基片式FBG传感器进行力学性能研究,实验结果表明传统粘结基片式FBG传感器方式会引起被测薄板材在拉伸过程中产生非线性变形。据此,通过ANSYS有限元分析软件仿真粘贴1 mm传感单元的1.5 mm薄板静态加载过程,并进行静力学有限元优化分析,力学分析及理论推导结果显示,对称粘贴基片式FBG传感单元能够解决应变与波长非线性关系,且能够有效补偿温度对测量的影响。搭建FBG解调系统与MTS力学测试实验系统,实验结果表明,在对称补偿的布点方式下,应变测试线性度为0.998,传感单元应变灵敏度为0.946 pm/με,提高了应变测试精度,可以有效的应用到飞机蒙皮应变测试。  相似文献   
2.
针对大功率量子级联激光器存在热积累严重的问题,本文基于MBE与MOCVD结合的二次外延生长InP基量子级联激光器结构的工艺方法,设计优化中波单管4W连续光输出的大功率量子级联激光器光学与散热性能。通过COMSOL软件对器件结构进行建模,设计器件光学和热学结构模型,分析不同结构参数对器件性能的影响,得到最优结构参数:在In053Ga047As层厚度为50nm,波导下包层InP为1μm,上包层InP为2μm,封装金层厚度为3μm时,器件光学和热学综合性能最优,其中波导光限制因子为074,核心区温度为378 K。本文研究相关结论可为后续大功率中波量子级联激光器结构与工艺设计提供指导。  相似文献   
3.
为了提高光纤光栅测量应变的测量范围与测量精度,该文对基片式光纤光栅传感器应变传递理论及其有限元分析应力分布进行了阐述,并对光纤光栅应变传感器的制作工艺进行了探索。封装工艺与普通基片式光纤光栅传感器的不同是在制作时加载确定的预紧力,用等强度梁对预应力基片式光纤光栅传感器进行测试并标定,得到传感器灵敏度为0.88pm/με,线性度为0.996,传递效率为74%。并在MTS拉伸试验机上进行预紧力基片式光纤光栅传感器、裸光纤光栅传感器与电阻应变计压缩对比实验研究,实验表明,预拉伸制作工艺提高了光纤光栅测量压缩应变的线性度与测量范围。  相似文献   
4.
光纤光栅传感器在航空航天领域有着广阔的应用前景,为了实现在航空航天真空环境下对卫星结构进行温度测量,对光纤光栅进行了特殊封装结构设计,在准确采集温度数据的同时,排除了结构应变对测量结果的影响,并对设计进行了有限元仿真分析。在-60-60℃的温度环境下,这种新型封装光纤光栅温度传感器的测试线性度为0.998,温度灵敏度为14.87pm/℃。为了验证其解耦特性,在MTS拉伸试验机上进行了测试,试验结果表明:结构形变带来的应变对该温度传感器没有影响,与理论分析相符。将其运用到实际真空环境进行对比验证,实验精度达0.15+0.002|t|℃。  相似文献   
5.
研究了相变光学器件的光传输性能,使用时域有限差分法建立覆盖Ge2Sb2Te5(GST)薄膜的弯曲波导模型,得到了在晶态和非晶态两种情况下GST的面积、厚度和在弯曲波导中的位置对光传输效率及损耗的影响规律。结果表明:GST的最优覆盖面积为0.415μm2,厚度为17 nm,器件光传输不受GST覆盖位置影响,光传输对比度最佳达到90.8%,插入损耗低至0.321 dB,在1 500~1 670 nm波长范围内能够实现宽光谱并行传输。该器件尺寸小,消光比大,理论上满足提高光计算准确率的需求。研究结果对于非易失性、并行集成光子矩阵计算单元器件的研制具有一定的参考意义。  相似文献   
6.
对工字梁载荷测试与基片式光纤光栅传感器受力进行有限元分析仿真,制作并封装加载确定的预拉伸力的基片式光纤光栅传感器。在材料拉伸机(MTS)上进行预拉伸基片式光纤光栅传感器标定与裸光纤光栅传感器对比测试实验,得到预拉伸制作工艺传感器提高了测量范围、应变灵敏度为0.95pm/με、线性度0.996、传递效率为83.5%。将其应用到飞机机翼工字梁上测试,同时电阻应变计监测最大应变,得到很好的测试效果,与仿真结果相吻合,对飞机机翼载荷标定具有重要意义。  相似文献   
7.
红外探测技术在卫星侦察、军事制导、天文观测、医疗检测、现代通信等重要领域发挥着关键作用。II类超晶格(T2SLs)红外探测器作为继碲镉汞探测器之后的新一代红外探测材料,在稳定性、可制造性和成本等方面具有独特优势。势垒型InAs/InAsSb T2SLs红外探测器是最具潜力的T2SLs红外探测器之一,近年来其关键性能得到了稳步提高,但仍受吸收系数低、异质外延生长困难和暗电流大等因素的制约。文中综述了III-V族T2SLs的发展历程,分析了势垒型InAs/InAsSb T2SLs红外探测器的不同势垒结构、关键性能和发展趋势,指出了势垒型InAs/InAsSb T2SLs红外探测器需要解决的关键问题和未来发展方向。  相似文献   
8.
光子人工智能芯片以光速执行运算,且具有低功耗、延迟低、抗电磁干扰的优势。小型化与集成化是实现这一技术革新的关键步骤。本文将光刻技术运用于衍射光栅的制作,提出一种基于10.6微米激光的全光衍射深度学习神经网络光栅设计及实现方法。由于光源波长由毫米波向微米波进化,神经元的特征尺度缩小至20微米,与现有光衍射神经网络相比,深度学习神经网络特征尺寸缩小了80倍,为进一步实现光子计算芯片大规模集成奠定了基础。  相似文献   
9.
折射率作为光学系统中应用最广泛的光学参数之一,对系统的光学性能具有极其重要的影响。 厚度与折射率所组成的 光学长度直接影响双折射器件在光学系统中的时延特性。 本文提出一种基于光纤激光频率分裂效应的折射率/ 厚度双参量测 量方法。 该系统通过对插入激光腔内的双折射器件进行旋转,利用频率分裂效应对不同角度的器件的双折射参数进行测量。 基于双折射器件中的折射率椭球,建立相位延迟、折射率、厚度和旋转角度之间的关系,通过拟合计算得到器件的折射率/ 厚度 参数。 实验结果表明,通过该系统对双折射元件的厚度测量误差为 210 nm,本征折射率进行测量误差为 10 -5 ,可广泛应用于红 外波段的双折射器件的本征折射率/ 厚度双参量测量。  相似文献   
10.
与传统洛伦兹线形相比,具有不对称线形的Fano共振光谱有更高的光谱分辨率,尤其适合传感应用。通过在硅基总线波导与跑道微环谐振腔耦合区域引入两个空气孔使得连续光谱产生突变相移,并与跑道微环谐振腔耦合形成Fano共振,且在较宽谱段范围内的每个共振峰都表现为非对称线形。通过仿真优化耦合间距以及空气孔与耦合区域中心的偏移量,获得最大光谱分辨率为312.05 dB/nm,消光比为53.09 dB的硅基Fano共振器件。在模仿被液体的折射率变化范围为1.33~1.332的条件下,仿真得到折射率传感灵敏度为125 nm/RIU。仿真结果表明本论文提出的器件结构简单,尺寸紧凑且制造误差小,为硅光子器件应用到高灵度敏度的集成生化传感提供新思路。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号