首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
电工技术   1篇
无线电   11篇
自动化技术   1篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2014年   3篇
  2013年   3篇
  2012年   2篇
  2010年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Multimedia Tools and Applications - With the rapid development of detecting violent behaviors in surveillance cameras, requests on systems that automatically recognize violent events are expanded....  相似文献   
2.
Wireless Personal Communications - In this article, OFDM-based single-user simultaneous wireless information and power transfer (SWIPT) system for power splitting (PS) and time switching (TS) plans...  相似文献   
3.
Energy detectors have the advantage of simple structure and inexpensive price. Due to the low signal to noise ratio (SNR) of the received signal in ultra-wideBand (UWB) system, these desirable advantages can be achieved at the expense of non-trivial performance degradation. This paper presents a phase compensation (PC) technique to improve the performance of energy detector in UWB systems. In PC-UWB, the frequency dependent phase of the system response at the transmitter is extracted and its opposite spectral phase is used as prefilter. Because of Low complexity, cost and energy consumption of energy detectors, PC techniques has extensive potential for future of UWB communication systems. Measurement results show that the use of PC-UWB leads to signal power concentration at the receiver, which reduces the number of RAKE fingers required in coherent detection as well as achieves a higher data rate with less intersymbol interference. However time reversal UWB can achieve secure data transmission, but its performance is worse than PC-UWB. Simulation results show that phase compensation reduces the inter symbol interference impacts. Therefore it is possible to use a simple receiver with insignificant performance degradation. It is also shown that PC-UWB considerably outperforms TR-UWB and has satisfying performance in SNR greater than 13 dB.  相似文献   
4.
A Single Input-Multiple Output Time Reversal UWB Communication System   总被引:1,自引:1,他引:0  
Time reversal is a promising technique for the improvement of UWB communication systems. Intersymbol interference (ISI) limits the system performance in such wireless systems. This paper presents a general ISI analysis for time reversal UWB communication systems. The time reversal UWB system gives good performance for rates below the coherence bandwidth but at higher data rates the performance of the system is limited by intersymbol interference and bit error rate saturates even for high signal-to-noise ratio. To mitigate the ISI effects, a single input/multiple output (SIMO) time reversal UWB system is used and its performance is analyzed. It is shown that by using a SIMO TR transceiver, ISI reduces and the system capacity increases. Transmitted signal power at SIMO time reversal decreases, therefore in low data rate SISO performance is better than SIMO, But in high rate scenario, SIMO TR suppresses the ISI better than the SISO TR and its performance is better than SISO TR. It is possible to compensate the reduced power by using a receiver with more sensitivity.  相似文献   
5.
In this paper, effects of channel estimation error on time reversal (TR) UWB systems are investigated. In time reversal, a signal is prefiltered by using a time reversed complex conjugate of the channel impulse response as a transmitter prefilter. To investigate the effect of channel estimation error, an error function is added to TR-UWB prefilter. Analytical and simulation results show that channel estimation error degrade the performance. The signal-to-interference plus noise ratio decreases with increasing error variance. It is shown that the channel performance is degraded about 0.5 dB in CM1 and 1.3 dB in CM4 channel.  相似文献   
6.
Non-coherent receivers, such as energy detectors (ED), are the simplest and the most practical alternatives to coherent receivers for low-rate and low-complexity applications in ultra-wideband (UWB) systems. However, these advantages are achieved at the expense of non-negligible performance degradation. One solution to improve the performance is to make use of time reversal (TR) technique. In this study, the performance of TR technique with non-coherent ED is analyzed in UWB systems. First, we derive an approximate analytical formula for the error probability of TR-ED which is based on tapped-delay line (TDL) channel model. Next, we theoretically and by simulations analyze the optimum integration interval which maximizes the performance of TR-ED. The results show that TR technique, by reducing the integration interval, considerably improves the performance compared to the conventional ED scheme.  相似文献   
7.
Data detection in the presence of interference is one of the main challenges in multicarrier code division multiple access (MC-CDMA) communication systems. In this paper, a new detection technique for downlink MC-CDMA systems is proposed. This technique uses complex-valued multilayer neural networks at the receiver side. With the new definition for desired responses (±(1+J) instead of ±1, where $ J = \sqrt {{ - 1}} $ ), the convergence rate is increased (in the training process) regarding to saturation of imaginary output and the performance is increased because of increasing Euclidean distance of output neuron inputs in two states of desired outputs (with factor of $ \sqrt {2} $ ). The performance of the proposed method is improved further by considering two various saturation coefficients (in the activation function of output layer) in the training and test processes. Since the last performance improving lead to low convergence rate, this effect is compensated by correcting the coefficient of training rate in the output layer. Simulation results confirm the high convergence rate, low computational complexity, and also good performance of the proposed method in wide range of SNRs.  相似文献   
8.
Channel characterization of time reversal UWB communication systems   总被引:2,自引:0,他引:2  
An ultra wideband (UWB) communications system that applies time reversal to transmit the desired signal is investigated. Exact expressions for the first- and second-order moments, cross-correlation, intersymbol interference metric, and correlation coefficient of time reversal (TR) UWB equivalent channel are derived in terms of the physical channel parameters such as delay spread and mean excess delay. These expressions are verified by simulated and experimental results. It is shown that TR-UWB excess delay is very smaller than UWB and its delay spread decreases as signaling bandwidth increases. Semi-analytical results show that the time reversal UWB delay spread is approximately the same as UWB. Furthermore, an ISI metric is derived for TR-UWB channel based on transmitted signal and UWB channel parameters. Moreover, correlation coefficient of two TR-UWB received signals with different power delay profile is computed analytically. Simulation and analytical results show that for τ?>?0.3T w correlation coefficient is below 0.25 and for τ?>?T w correlation coefficient is zero, where T w is the transmitted pulse width. Finally, theoretical performance of a receiver with one tap matched filter is computed and compared with measured and simulated result.  相似文献   
9.
In this paper, secure channel coding schemes based on turbo codes are suggested for time reversal ultra wideband (TR-UWB) systems. Turbo code has the capability of error correction near Shannon’s limit. Adding security to turbo code is an attractive idea since it could reduce the overall processing cost of providing secure coded data and enjoys the advantages of high-speed encryption and decryption with high security, smaller encoder and decoder size and greater efficiency. The proposed turbo code schemes are labeled as follows: secure puncturing rate, secure frame length, and secure interleaving. Using these scenarios, secure turbo code is defined in a way that the redundant information used for error correction is not pre-determined by the nature of the error correction part of the algorithm but it can be chosen arbitrarily out of the whole set of possible strings. The lower bound of bit error probability for secure turbo code schemes in AWGN and TR-UWB systems are evaluated. Analytical and simulation results show secure turbo code performance is very satisfying. Various crypto-analytical attacks are investigated against these schemes. Based on this analysis, secure turbo code structures changed during the encryption procedure to increase the complexity of linear and differential cryptanalysis. It is seen that the performance of conventional turbo code and random frame length with Poisson distribution are the same. Comparing these schemes shows, secure interleaving approach has the best performance and secure puncturing rate the worst, but the latter provides the most security. The enhanced security of UWB, due to rich multipath nature of UWB channel, could be exploited. Due to space-time focusing property of time reversal UWB, there is an environmental confidentiality (or spatial security), which is additional security for secure turbo code in this system. Using secure turbo code, it is possible to increase the transmission range of UWB systems.  相似文献   
10.
Bang-bang phase detector (BBPD) is one of the essential blocks in the phase-locked loop and clock and data recovery that are used in transceivers. But BBPD has the metastability problem as data change in timing window. It suffers from not only metastability failure but also quantization noise, which causes output jitter. In this paper, the novel model is presented to evaluate the effect of both metastability and jitter on ML-BBPD, and also, it is shown that multilevel BBPD (ML-BBPD) has the improved quantization noise in comparison with the Alexander BBPD. In this model, it is shown that by increasing the oversampling ratio, the quantization noise is decreased, and with the metastability effect and the increment of quantization steps, the characteristic curve of the ML-BBPD becomes more smoothed. Also, the output jitter of ML-BBPD, in which metastability failure is diminished, is modeled. The error function in the model is simulated at system level and compares with the results achieved from simulation at circuit level to prove the validity of the proposed model. The simulation is done in TSMC 65-nm CMOS technology under 1-V supply voltage to compare the characteristic of ML-BBPD for various number of sampling clocks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号