首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
化学工业   5篇
机械仪表   1篇
建筑科学   1篇
能源动力   1篇
无线电   2篇
一般工业技术   1篇
冶金工业   1篇
自动化技术   9篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2015年   2篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2009年   2篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Four cationic surfactants of quaternary hexammonium silane chloride based on hexamethylenetetramine and alkyl chloride were synthesized. The chemical structures of the prepared cationic surfactants were elucidated using Fourier transform infrared (FT‐IR) spectroscopy and mass spectrometry analysis. The surface and thermodynamic properties of the prepared surfactants were also studied. The performance of these cationic surfactants as microfouling agents against two strains of Gram‐negative bacteria, namely, Pseudomonas aeruginosa and Escherichia coli, and two strains of Gram‐positive bacteria, namely, Staphylococcus aureus and Bacillus subtilis, were evaluated as antimicrobial agents. The results showed that the maximum antimicrobial activity was detected for N‐hexamethylenetetramine‐N‐ethyl silane ammonium trichloride (Ah). The maximum and minimum antimicrobial activities were 73 and 60 % against S. aureus and E. coli, respectively, at a concentration of 5 mg/l, pH 7, and 37 °C.  相似文献   
2.
In this work, a design approach of proportional integral-fractional filter (PI-FF) controller for first order plus time delay (FOPTD) system is proposed in order to enhance the feedback control system performances characteristics. The controller design method is drawn up such that the transfer function of the overall closed-loop system is equivalent to the transfer function of the general fractional Bagley–Torvik reference model whose behaviour ranges from relaxation to oscillation for different values of the fractional order derivative and the damping ratio-like parameter. The tuning parameters of the PI-FF controller are derived analytically from the FOPTD process model and the general fractional Bagley–Torvik reference model parameters. Illustrative examples were presented to test the effectiveness and the usefulness of the proposed PI-FF controller on the feedback control system performance characteristics enhancement.  相似文献   
3.
This paper affords dynamic modeling and control for a new 3D pantograph manipulator. The new manipulator possesses pure decoupled translational motions and it is characterized by large workspace to size ratio, high speed, rigidity, and accuracy. Euler-Lagrange first type method is used to get the dynamic model. However, the resulted dynamic model is too complex to be used in model-based control techniques. Therefore, a simplified nominal plant is proposed. It allows the inverse dynamic solution efficiently. However, an explicit form of the nominal Coriolis and centrifugal matrix cannot be obtained due to the complicated kinematic terms. Considering these dynamic characteristics as well as the required robust trajectory tracking performance of the manipulator, a new controller is proposed. The new controller is called inverse optimal PID with Feed-Forward Control which is designed in H framework. The new controller has the following merits; robustness, optimality, simple implementation, and efficient execution without the need of explicit forms of dynamic matrices. The extended disturbance in the proposed controller is smaller than that in the inverse optimal PID control (IPID) and contains one type of error contrary to the nonlinear robust motion controller (NRIC). The performance of the proposed controller is compared with those of IPID and NRIC controllers for different trajectories and payloads. The dynamic simulation results via co-simulation of MSC-ADAMS® and MATLAB®/Simulink software prove the robustness of the proposed controller against speed/payload variations. The proposed controller is found to have higher performance compared with IPID and NRIC controllers. These results assure the feasibility of the 3D pantograph manipulator with the proposed controller for pure translational tracking applications.  相似文献   
4.
A novel 3D compliant manipulator for micromanipulation is introduced based on pantograph linkage. The proposed manipulator provides decoupled 3DOF translational motions. The key design feature is the use of parallelograms, which maintain the orientation of the end-effector fixed. The proposed manipulator provides advantages over its counterparts in the literature. It has significantly higher workspace to size ratio if its pantograph acts as a magnification device. On the other hand, it has higher resolution if its pantograph acts as a miniaturizing device. This provides great flexibility in the design process to account for the limited variety of the micro-actuators and the large variety of the micro-scale tasks in terms of workspace and resolution. Thus, the proposed system possesses the characteristics of gearing (speed up or speed down). A suitable choice of flexure hinges and material is done. The position and velocity kinematic analysis are carried out. Analytical expressions are derived for singularity-free-workspace boundaries in terms of physical constraints of the flexure joints. Dexterity analysis is performed to evaluate the design performance. A synthesis methodology of the proposed manipulator is developed. A finite element analysis is carried out and a prototype is manufactured to validate the conceptual design. Simulation and experimental results have successfully demonstrated the linearity and consistency between input and output displacements with acceptable parasitic motions. Moreover, the manipulability of the proposed manipulator is found to be configuration independent. Also, the manipulator could have isotropic performance over its workspace for certain actuator setup.  相似文献   
5.
6.
Multimedia Tools and Applications - This paper proposes several efficient techniques for multimedia encryption based on a chaotic map. The proposed techniques use four types of chaotic maps and...  相似文献   
7.

In this paper, a new scheme for image encryption based on a double chaotic pseudo random generator (DCPG), simple XOR and shift rotations operations is proposed. The DCPG is a combination of both Tent and Chebyshev chaotic and so it needs three values of control parameters which are used as shared secret keys. The encryption consists of two rounds. In the first round, the hash value of the input image is computed using SHA-512. This value also is used as a forth shared secret key and from which, 4 amounts of the shift rotations are extracted. A pseudorandom sequence is generated using the proposed DCPG with the same size of the input image. This sequence and also the input image are divided into blocks of size 1?×?8. Each block of input image is processed with the corresponding block of the pseudorandom sequence using simple shift rotation and XOR operation. To extend the effect of the original image one pixel change to all the pixels of the cipher image, a second round of XOR operation is added. The proposed scheme has many advantages. It is highly secure due to two reasons. Firstly, it uses four secret keys for encryption which provides a large key space to overcome all types of brute force attacks. Secondly, the amounts of shift rotation used are input image dependent which achieves a strong resistance against chosen plaintext attacks. Also, it is more efficient compared to other recently existing schemes as it consists only of two rounds of simple operations. Security analysis of scheme has been provided. Based on the results, our scheme is highly secure with a reduced encryption time and so it can be used for many applications which require real time secure image communications.

  相似文献   
8.
In this work, a design approach of proportional integral-fractional filter (PI-FF) controller for first order plus time delay system (FOPTD) is proposed in order to enhance the feedback control system performance characteristics. The controller design method is drawn up such that the transfer function of the overall closed-loop system is equivalent to the transfer function of the general fractional Bagley–Torvik reference model whose behaviour ranges from relaxation to oscillation for different values of the fractional order derivative and the damping ratio-like parameter. The tuning parameters of the PI-FF controller are derived analytically from the FOPTD process model and the general fractional Bagley–Torvik reference model parameters. Illustrative examples were presented to test the effectiveness and the usefulness of the proposed PI-FF controller on the feedback control system performance characteristics enhancement.  相似文献   
9.
The proportional–integral–derivative (PID) controllers have remained, by far, the most commonly and practically used in all industrial feedback control applications; therefore, there is a continuous effort to improve the system control quality performances. More recently Podlubny has proposed the fractional PIλDμ controller, a generalisation of the classical PID controller, involving an integration action of order λ and differentiation action of order μ. Since then, many researchers have been interested in the use and tuning of this type of controller. In this article, a new conception method of this fractional PIλDμ controller is considered. The basic ideas of this new tuning method are based, in the first place, on the classical Ziegler–Nichols tuning method for setting the parameters of the fractional PIλDμ controller for λ = μ = 1, which means setting the parameters of the classical PID controller, and on the minimum integral squared error criterion by using the Hall–Sartorius method for setting the fractional integration action order λ and the fractional differentiation action order μ. Illustrative examples and simulation results are presented to show the control quality enhancement of this proposed fractional PIλDμ controller conception method compared to the PID controller conception using Ziegler–Nichols tuning method.  相似文献   
10.
A useful representation of fractional order systems is the state space representation. For the linear fractional systems of commensurate order, the state space representation is defined as for regular integer state space representation with the state vector differentiated to a real order. This paper presents a solution of the linear fractional order systems of commensurate order in the state space. The solution is obtained using a technique based on functions of square matrices and the Cayley-Hamilton theorem. The technique developed for linear systems of integer order is extended to derive analytical solutions of linear fractional systems of commensurate order. The basic ideas and the derived formulations of the technique are presented. Both, homogeneous and inhomogeneous cases with usual input functions are solved. The solution is calculated in the form of a linear combination of suitable fundamental functions. The presented results are illustrated by analyzing some examples to demonstrate the effectiveness of the presented analytical approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号