首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3494篇
  免费   255篇
  国内免费   25篇
电工技术   70篇
综合类   13篇
化学工业   941篇
金属工艺   73篇
机械仪表   153篇
建筑科学   99篇
矿业工程   5篇
能源动力   260篇
轻工业   330篇
水利工程   50篇
石油天然气   52篇
武器工业   2篇
无线电   303篇
一般工业技术   680篇
冶金工业   114篇
原子能技术   34篇
自动化技术   595篇
  2024年   10篇
  2023年   120篇
  2022年   209篇
  2021年   270篇
  2020年   213篇
  2019年   231篇
  2018年   255篇
  2017年   211篇
  2016年   245篇
  2015年   150篇
  2014年   220篇
  2013年   329篇
  2012年   227篇
  2011年   200篇
  2010年   152篇
  2009年   150篇
  2008年   95篇
  2007年   81篇
  2006年   68篇
  2005年   33篇
  2004年   28篇
  2003年   26篇
  2002年   25篇
  2001年   16篇
  2000年   13篇
  1999年   21篇
  1998年   35篇
  1997年   15篇
  1996年   21篇
  1995年   13篇
  1994年   18篇
  1993年   10篇
  1992年   11篇
  1991年   8篇
  1990年   6篇
  1989年   1篇
  1988年   2篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   8篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1968年   1篇
排序方式: 共有3774条查询结果,搜索用时 125 毫秒
1.
Ferrites are an important group of magnetic materials which are used as absorbers. The incorporation of ferrite and conducting polymer achieves great enhancement in microwave absorption properties. The nanocomposites of hexagonal ferrites embedded by conducting polymers such as polypyrrole, polyaniline and polythiophene (PTH) have been paid much attention. In the present study, strontium hexagonal ferrite doped by Zr and Zn with the final formula of SrFe12-x(ZrZn)0.5xO19 considering x = 0.9 and embedded by PTH was produced to achieve a nanocomposite with the highest microwave absorbing ability. In this study, after synthesis of SrFe12O19(ZrZn)0.5xO19 and PTH, the nanocomposite was prepared by in situ polymerization. Wrapping the ferrite particles and PTH chains could form nanocomposite properly, and therefore acceptable interactions were observable between SrFe12-x(ZrZn)0.5xO19ferrite particles and PTH polymer chains in the composites. Assessing the X-ray diffraction (XRD) patterns of SrFe12-x(ZrZn)0.5xO19, PTH, and PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite indicated that the PTH characteristic peak shifts slightly and its peak intensity reduces, which may be attribute to the coating of PTH polymer chains onto SrFe12-x(ZrZn)0.5xO19 particles. We revealed also lower magnetic properties in the obtained nanocomposite. The morphological assessment also suggested that PTH could effectively coat the SrFe12-x(ZrZn)0.5xO19 particles. The synergistic effect of SrFe12-x(ZrZn)0.5xO19 particle plus PTH leads to microwave absorption percentage higher than 95% by PTH/SrFe12-x(ZrZn)0.5xO19 nanocomposite. Overall, nanocomposite creating by coupling interaction between SrFe12-x(ZrZn)0.5xO19 particles (x = 0.9) and PTH can effectively lead to achieve the highest rate of absorption of electromagnetic waves.  相似文献   
2.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper.  相似文献   
3.
In the present study, spinel structure CoFe2O4 nanoparticles were successfully synthesized by the sol-gel auto-combustion technique. The effect of apple cider vinegar (ACV) addition as an organic biocompatible agent on the size, morphology, and magnetic properties of CoFe2O4 nanoparticles was investigated in detail. The phase evolution, particle size, and lattice parameter changes of the synthesized phase have been estimated by using Rietveld structure refinement analysis of X-ray powder diffraction data. Also, Fourier transform infrared spectra (FT-IR) of the samples verified the presence of two expected bands correspond to tetrahedral and octahedral metal-oxygen complexes within the spinel structure. Furthermore, microstructural observations revealed that ultrafine particles have a semi-spherical morphology. It was shown that the particles size decreased from ~45 to ~17 nm with an increase in the amount of ACV. Magnetic properties were carried out by vibrating sample magnetometer (VSM) at room temperature. Both the saturation magnetization (Ms) and coercivity (Hc) were found to be significantly dependent on the crystallite size and the amount of ACV.  相似文献   
4.
5.
Journal of Communications Technology and Electronics - This paper implements mathematically rigorous extended trial function algorithm to address cubic–quartic optical solitons in...  相似文献   
6.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
7.
8.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   
9.
Ultrasonic wave velocities were determined at parallel and perpendicular to manufacturing direction and at the interval angles of 15° in clockwise and counterclockwise directions of particleboard and fiberboard. The experimental results were compared with the predicted values using some empirical formulae such as Hankinson and Jacoby equations. The results showed that the ultrasonic wave velocity were the highest in parallel direction in particleboard and fiberboard and decreases with increase of angle and the lowest values occurred in perpendicular direction. The predicted ultrasonic velocity using Hankinson and Jacoby equations are in close agreement with the measured values. Relationship between ultrasonic wave velocities and particles and fibers angle could be successfully presented by cubic and quadratic regression equations as well.  相似文献   
10.
The abrasion characteristics of Tencel fabrics were evaluated by Martindale abrasion and laundering, and the breakdown mechanism of fibers was surveyed by scanning electron microscopy. The fabric was subjected to pad‐dry‐cure treatment with two different types of modified dimethyloldihydroxyethylene urea resins (Reaktant DH and Reaktant FC). Although the degree of dry abrasion varied with different resins, the damage exhibited by individual fibers differed little from untreated to resin‐treated; the major mechanism of abrasion was through friction, and the mechanism of fiber failure was multiple splitting and transverse cracking. In untreated Tencel, the characteristic feature of wet abrasion was massive fibrillation, and in crosslinked fabrics, the wet abrasion mechanism was through fiber slippage and slicing action, although in the Reaktant FC‐treated fabric, the wet abrasion mechanism was more through slicing than through fiber splitting. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1391–1398, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号