首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   11篇
  国内免费   1篇
电工技术   1篇
化学工业   27篇
金属工艺   5篇
机械仪表   2篇
建筑科学   6篇
能源动力   22篇
轻工业   17篇
水利工程   1篇
无线电   9篇
一般工业技术   42篇
冶金工业   2篇
自动化技术   16篇
  2024年   1篇
  2023年   2篇
  2022年   6篇
  2021年   9篇
  2020年   11篇
  2019年   7篇
  2018年   7篇
  2017年   11篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   14篇
  2012年   8篇
  2011年   16篇
  2010年   11篇
  2009年   10篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2005年   5篇
  2004年   3篇
  2003年   2篇
  2000年   1篇
  1999年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1976年   2篇
排序方式: 共有150条查询结果,搜索用时 109 毫秒
1.
Multimedia Tools and Applications - Currently, Deep Learning is playing an influential role for Image analysis and object classification. Maize’s diseases reduce production that subsequently...  相似文献   
2.
In the last three years or so we at Enterprise Platforms Group at Intel Corporation have been applying formal methods to various problems that arose during the process of defining platform architectures for Intel's processor families. In this paper we give an overview of some of the problems we have worked on, the results we have obtained, and the lessons we have learned. The last topic is addressed mainly from the perspective of platform architects.  相似文献   
3.
In this paper, we present a new variant of Particle Swarm Optimization (PSO) for image segmentation using optimal multi-level thresholding. Some objective functions which are very efficient for bi-level thresholding purpose are not suitable for multi-level thresholding due to the exponential growth of computational complexity. The present paper also proposes an iterative scheme that is practically more suitable for obtaining initial values of candidate multilevel thresholds. This self iterative scheme is proposed to find the suitable number of thresholds that should be used to segment an image. This iterative scheme is based on the well known Otsu’s method, which shows a linear growth of computational complexity. The thresholds resulting from the iterative scheme are taken as initial thresholds and the particles are created randomly around these thresholds, for the proposed PSO variant. The proposed PSO algorithm makes a new contribution in adapting ‘social’ and ‘momentum’ components of the velocity equation for particle move updates. The proposed segmentation method is employed for four benchmark images and the performances obtained outperform results obtained with well known methods, like Gaussian-smoothing method (Lim, Y. K., & Lee, S. U. (1990). On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques. Pattern Recognition, 23, 935–952; Tsai, D. M. (1995). A fast thresholding selection procedure for multimodal and unimodal histograms. Pattern Recognition Letters, 16, 653–666), Symmetry-duality method (Yin, P. Y., & Chen, L. H. (1993). New method for multilevel thresholding using the symmetry and duality of the histogram. Journal of Electronics and Imaging, 2, 337–344), GA-based algorithm (Yin, P. -Y. (1999). A fast scheme for optimal thresholding using genetic algorithms. Signal Processing, 72, 85–95) and the basic PSO variant employing linearly decreasing inertia weight factor.  相似文献   
4.
Quantitative proteomics can be used for the identification of cancer biomarkers that could be used for early detection, serve as therapeutic targets, or monitor response to treatment. Several quantitative proteomics tools are currently available to study differential expression of proteins in samples ranging from cancer cell lines to tissues to body fluids. 2-DE, which was classically used for proteomic profiling, has been coupled to fluorescence labeling for differential proteomics. Isotope labeling methods such as stable isotope labeling with amino acids in cell culture (SILAC), isotope-coded affinity tagging (ICAT), isobaric tags for relative and absolute quantitation (iTRAQ), and (18) O labeling have all been used in quantitative approaches for identification of cancer biomarkers. In addition, heavy isotope labeled peptides can be used to obtain absolute quantitative data. Most recently, label-free methods for quantitative proteomics, which have the potential of replacing isotope-labeling strategies, are becoming popular. Other emerging technologies such as protein microarrays have the potential for providing additional opportunities for biomarker identification. This review highlights commonly used methods for quantitative proteomic analysis and their advantages and limitations for cancer biomarker analysis.  相似文献   
5.
6.
7.
Two‐dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon‐based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface‐to‐volume ratios, and surface charge. Here, we focus on state‐of‐the‐art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials.  相似文献   
8.
Colloidal silver is observed to affect the transmittance of p-type Cd1−y Zn y Te (CZT) single-crystal substrate material at room temperature. The optical transmittance spectra have been analyzed in the near-infrared (NIR) and mid-infrared (MIR) regions. The transmittance characteristics of CZT showed significant reduction in absorption due to split-off valance band transitions in the NIR region and intervalence band absorption in the MIR region upon coating CZT substrates with silver paste. This reduction in absorption has been explained to be due to the compensation of the acceptor defects (native and foreign). Silver atoms incorporated from the silver coating help in compensation of these defects. A similar effect on transmittance characteristics of mercury cadmium telluride (MCT) epilayers grown on CZT substrates after coating silver paste on the CZT substrate side was also observed. An improvement in the transmittance of CZT substrates after the application of silver paste was observed. A similar improvement in transmittance is usually achieved by annealing the substrates in a Cd/Zn atmosphere. The results are explained by considering the formation of neutral complexes of acceptors (cadmium vacancies) and the interstitial silver. This study also points to the important conclusion that silver paste on CZT should be applied with caution for measurement purposes since it diffuses even at room temperature and modifies the optical characteristics.  相似文献   
9.
In this paper, a new model order reduction technique is presented by combining the benefits of the meta-heuristic cuckoo search optimization and Eigen permutation methods for order reduction of higher order continuous-time systems. In the proposed approach, the numerator and the denominator polynomials of reduced order model are determined by Cuckoo search and Eigen permutation approaches, respectively. The proposed approach preserves the stability of the original system into the lower order model as the Eigen permutation retains the dominant pole with simultaneous cluster formation of the remaining real and complex poles. The effectiveness of the proposed method is validated by single-input single-output and multiple-inputs multiple-outputs numerical examples.  相似文献   
10.
Use of composite heat sinks (CHS), constructed using a vertical array of ‘fins’ (or elemental composite heat sink, ECHS), made of large latent heat capacity phase change materials (PCM) and highly conductive base material (BM) is a much sought cooling method for portable electronic devices, which are to be kept below a set point temperature (SPT). This paper presents a thermal design procedure for proper sizing of such CHS, for maximizing the energy storage and the time of operation until all of the latent heat storage is exhausted.For a given range of heat flux, q″, and height, A, of the CHS, using a scaling analysis of the governing two dimensional unsteady energy equations, a relation between the critical dimension for the ECHS and the amount of PCM used (?) is determined. For a ?, when the dimensions of the ECHS are less than this critical dimension, all of the PCM completely melts when the CHS reaches the SPT. The results are further validated using appropriate numerical method solutions. A proposed correlation for chosen material properties yields predictions of the critical dimensions within 10% average deviation. However, the thermal design procedure detailed in this paper is valid, in general, for similar finned-CHS configurations, composed of any high latent heat storage PCM and high conductive BM combination.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号