首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
无线电   1篇
自动化技术   4篇
  2018年   1篇
  2007年   2篇
  2003年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.

Many nature-inspired optimization algorithms have recently been proposed to solve difficult optimization problems where the mathematical gradient-based approaches could not be used. However, those approaches were often not tested on a proper set of problems. Moreover, statistical tests are sometimes not used to validate the conclusions. Therefore, empirical analyses of such approaches are needed. In this paper, a very recent nature-inspired approach, symbiosis organisms search (SOS), is investigated. A set of unbiased and characteristically different problems are used to study the performance of SOS. In addition, a comparison with some recent optimization methods is conducted. Then, the effect of SOS only parameter, eco_size, is studied, and the use of different random distributions is also explored. Finally, three simple SOS variants are proposed and compared to the original SOS. Conclusions are validated using nonparametric statistical tests.

  相似文献   
2.
This article presents a decentralized control scheme for the complex problem of simultaneous position and internal force control in cooperative multiple manipulator systems. The proposed controller is composed of a sliding mode control term and a force robustifying term to simultaneously control the payload's position/orientation as well as the internal forces induced in the system. This is accomplished independently of the manipulators dynamics. Unlike most controllers that do not require prior knowledge of the manipulators dynamics, the suggested controller does not use fuzzy logic inferencing and is computationally inexpensive. Using a Lyapunov stability approach, the controller is proven to be robust in the face of varying system's dynamics. The payload's position/orientation and the internal force errors are also shown to asymptotically converge to zero under such conditions.  相似文献   
3.
We examine in this paper the complex problem of simultaneous position and internal force control in multiple cooperative manipulator systems. This is done in the presence of unwanted parametric and modeling uncertainties as well as external disturbances. A decentralized adaptive hybrid intelligent control scheme is proposed here. The controller makes use of a multi-input multi-output fuzzy logic engine and a systematic online adaptation mechanism. Unlike conventional adaptive controllers, the proposed controller does not require a precise dynamical model of the system's dynamics. As a matter of fact, the controller can achieve its control objectives starting from partial or no a priori knowledge of the system's dynamics. The ability to incorporate the already acquired knowledge about the system's dynamics is among what distinguishes the proposed controller from its predecessor adaptive fuzzy controllers. Using a Lyapunov stability approach, the controller is proven to be robust in the face of varying intensity levels of the aforementioned uncertainties. The position and the internal force errors are also shown to asymptotically converge to zero under such conditions  相似文献   
4.
We present soft computing-based results pertaining to the hierarchical tuning process of PID controllers located within the control loop of a class of nonlinear systems. The results are compared with PID controllers implemented either in a stand alone scheme or as a part of conventional gain scheduling structure. This work is motivated by the increasing need in the industry to design highly reliable and efficient controllers for dealing with regulation and tracking capabilities of complex processes characterized by nonlinearities and possibly time varying parameters. The soft computing-based controllers proposed are hybrid in nature in that they integrate within a well-defined hierarchical structure the benefits of hard algorithmic controllers with those having supervisory capabilities. The controllers proposed also have the distinct features of learning and auto-tuning without the need for tedious and computationally extensive online systems identification schemes.  相似文献   
5.
This paper tackles the issue of bandwidth allocation in asynchronous transfer mode (ATM) networks using recently developed tools of computational intelligence. The efficient bandwidth allocation technique implies effective resources utilization of the network. The fluid flow model has been used effectively among other conventional techniques to estimate the bandwidth for a set of connections. However, such methods have been proven to be inefficient at times in coping with varying and conflicting bandwidth requirements of the different services in ATM networks. This inefficiency is due to the computational complexity of the model. To overcome this difficulty, many approximation-based solutions, such as the fluid flow approximation technique, were introduced. Although such solutions are simple, in terms of computational complexity, they nevertheless suffer from potential inaccuracies in estimating the required bandwidth. Soft computing-based bandwidth controllers, such as neural networks- and neurofuzzy-based controllers, have been shown to effectively solve an indeterminate nonlinear input-output (I-O) relations by learning from examples. Applying these techniques to the bandwidth allocation problem in ATM network yields a flexible control mechanism that offers a fundamental tradeoff for the accuracy-simplicity dilemma.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号