首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4819篇
  免费   348篇
  国内免费   14篇
电工技术   70篇
综合类   19篇
化学工业   1078篇
金属工艺   118篇
机械仪表   144篇
建筑科学   204篇
矿业工程   12篇
能源动力   150篇
轻工业   670篇
水利工程   49篇
石油天然气   42篇
无线电   436篇
一般工业技术   949篇
冶金工业   402篇
原子能技术   49篇
自动化技术   789篇
  2024年   11篇
  2023年   68篇
  2022年   156篇
  2021年   207篇
  2020年   158篇
  2019年   187篇
  2018年   185篇
  2017年   173篇
  2016年   201篇
  2015年   165篇
  2014年   221篇
  2013年   338篇
  2012年   290篇
  2011年   393篇
  2010年   278篇
  2009年   281篇
  2008年   261篇
  2007年   255篇
  2006年   189篇
  2005年   134篇
  2004年   90篇
  2003年   87篇
  2002年   80篇
  2001年   68篇
  2000年   72篇
  1999年   53篇
  1998年   88篇
  1997年   67篇
  1996年   49篇
  1995年   51篇
  1994年   47篇
  1993年   19篇
  1992年   21篇
  1991年   12篇
  1990年   16篇
  1989年   19篇
  1988年   13篇
  1987年   18篇
  1986年   8篇
  1985年   15篇
  1984年   14篇
  1983年   13篇
  1982年   14篇
  1981年   9篇
  1980年   7篇
  1979年   11篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   13篇
排序方式: 共有5181条查询结果,搜索用时 15 毫秒
1.
This work presents the dielectric properties of YNbO4 (YNO)–TiO2 composites in the microwave range. X-ray diffraction analysis demonstrates that the addition of TiO2 to YNO results in the formation of a Y(Nb0.5Ti0.5)2O6 phase. In the microwave range, the values of permittivity and dielectric loss did not present major changes with the increment of TiO2. Moreover, the addition of TiO2 results in an improvement in the thermal stability of YNO, with YNO63 demonstrating a resonant frequency of ?8.96 ppm.°C?1. We utilised numerical simulations to evaluate the behaviour of these materials as dielectric resonator antennae and it is found that they exhibit a reflection coefficient below ?10 dB at the resonant frequency, with a realised gain of 4.94 – 5.76 dBi, a bandwidth of 665–1050 MHz and a radiation efficiency above 84%. Our results indicate that YNO–TiO2 composites are interesting candidates for microwave operating devices.  相似文献   
2.
The present study reports for the first time the performance of silver phosphate (Ag3PO4) microcrystals as photocatalyst (degradation of Rodamine B-RhB) and antifungal agent (against Candida albicansC. albicans) under visible-light irradiation (455 nm). Ag3PO4 microcrystals were synthesized by a simple co-precipitation (CP) method at room temperature. The structural and electronic properties of the as-synthetized Ag3PO4 have been investigated before and after 4 cycles of RhB degradation under visible light using X-ray diffraction (XRD), micro-Raman spectroscopy, UV–Vis spectrophotometer and field emission scanning electron microscopy (FE-SEM) images. The antifungal activity was analyzed in planktonic cells and 48h-biofilm of C. albicans by colony forming units (CFU) counting, confocal laser and FE-SE microscopies. Statistical analysis was carried out using SPSS software. Morphological and structural modifications of Ag3PO4 were observed upon recycling. After 4 recycles, the material maintained its photodegradation property; an eightfold increase in the efficiency of Ag3PO4 was observed in planktonic cells and a two fold increase in biofilm when irradiated under visible light. Thus, higher antifungal effectiveness against C. albicans was obtained when associated with visible-light irradiation.  相似文献   
3.
Multimedia Tools and Applications - The design of robots capable of operating autonomously in changing and unstructured environments, requires using complex software architectures in which,...  相似文献   
4.
5.
6.
7.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
8.
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.  相似文献   
9.
Antibiotics are potentially a cause of neurotoxicity in dialysis patients, the most common are the beta‐lactams as ceftazidime and cefepime, and few cases have been reported after piperacillin/tazobactam use. This report presents a case of a hypertensive and diabetic 67‐year‐old woman in regular hemodialysis, which previously had a stroke. She was hospitalized presenting pneumonia, which was initially treated with cefepime. Two days after treatment, she presented dysarthria, left hemiparesis, ataxia, and IX and X cranial nerves paresis. Computed tomography showed no acute lesions and cefepime neurotoxicity was hypothesized, and the antibiotic was replaced by piperacillin/tazobactam. The neurologic signs disappeared; however, 4 days after with piperacillin/tazobactam treatment, the neurological manifestations returned. A new computed tomography showed no new lesions, and the second antibiotic regimen withdrawn. After two hemodialysis sessions, the patient completely recovered from neurological manifestations. The patient presented sequentially neurotoxicity caused by two beta‐lactams antibiotics. This report meant to alert clinicians that these antibiotics have dangerous neurological effects in chronic kidney disease patients.  相似文献   
10.
This paper presents a hand-held microsystem based on new fully integrated magnetoresistive biochips for biomolecular recognition (DNA hybridization, antibody antigen interaction, etc.). Magnetoresistive chip surfaces are chemically treated, enabling the immobilization of probe biomolecules such as DNA or antibodies. Fluid handling is also integrated in the biochip. The proposed microsystem not only integrates the biochip, which is an array of 16times16 magnetoresistive sensors, but it also provides all the electronic circuitry for addressing and reading out each transducer. The proposed architecture and circuits were specifically designed for achieving a compact, programmable and portable microsystem. The microsystem also integrates a hand-held analyzer connected through a wireless channel. A prototype of the system was already developed and detection of magnetic nanoparticles was obtained. This indicates that the system may be used for magnetic label based bioassays  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号