首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  免费   0篇
电工技术   2篇
化学工业   22篇
金属工艺   1篇
无线电   5篇
一般工业技术   2篇
自动化技术   10篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2014年   1篇
  2013年   4篇
  2012年   4篇
  2011年   1篇
  2010年   7篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2003年   1篇
  1982年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
The polymerization of α‐methylstyrene (AMS) catalyzed by Maghnite‐H+ (Mag‐H) was investigated. Mag‐H is a montmorillonite sheet silicate clay, exchanged with protons. It was found that the cationic polymerization of AMS is initiated by Mag‐H at ambient temperature in bulk and in solution. The effect of the amount of Mag‐H, the temperature, and the solvent was studied. The polymerization rate increased with increase in the temperature and the proportion of catalyst, and it was larger in nonpolar solvents. These results indicated the cationic nature of the polymerization. It may be suggested that the polymerization is initiated by proton addition to monomer from Mag‐H. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
2.
A recent concern in marine robotics is to consider the deployment of fleets of autonomous underwater vehicles (AUVs) and autonomous surface vehicles (ASVs). Multiple vehicles with heterogeneous capabilities have several advantages over a single vehicle system, and in particular the potential to accomplish tasks faster and better than a single vehicle. This paper addresses in this context the problem of underwater targets localization. A systematic and exhaustive coverage strategy is not efficient in terms of exploration time: it can be improved by making the AUVs share their information to cooperate, and optimize their motions according to the state of their knowledge on the target localization. We present techniques to build environment representations on the basis of which adaptive exploration strategies can be defined, and define an architecture that allows information sharing and cooperation between the AUVs. Simulations are carried out to evaluate the proposed architecture and the adaptive exploration strategies.  相似文献   
3.
The activated‐monomer cationic ring‐opening polymerization of ethylene oxide, initiated with ethylene glycol and using an acid‐exchanged montmorillonite clay called Maghnite‐H+ as an effective catalyst, was carried out to obtain the corresponding homopolymers with narrow polydispersity ratios. The molecular weights of the obtained polymers were controlled with the feed ratio of the monomer to the initiator. The effects of the amount of the catalyst and time on the polymerization yield and viscosity of the polymers were studied. The structure was confirmed with proton nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
4.
Activated monomer cationic ring‐opening polymerization of ethylene oxide initiated with 1H,1H,2H, 2H‐perfluorooctan‐1‐ol, using acid exchanged montmorillonite clay called Maghnite‐H+ (Mag‐H+) as an effective catalyst, was carried out to obtain the corresponding homopolymers with narrow polydispersity ratios. The molecular weights of the obtained polymers could be controlled with the feed ratio of the monomer and initiator. The effect of amount of catalyst and time on the polymerization yield and viscosity of the polymers were studied. The structure was confirmed by 1H‐NMR and MALDI‐TOF‐MS. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
5.
The different polymer networks were constructed by two kinds of associations, one is host-guest inclusion between P(AM/A-β-CD/NaA) and P(AM/BHAM/NaA), and the other is hydrophobic association of P(AM/BHAM/NaA). Under the high-speed shearing, the viscosity survival and recovery rate of different systems were investigated. The results show the inclusion complex (CD:BHAM = 2:1) has excellent shearing resistance performance, and it was also verified by dynamic light scattering (DLS). This is mainly because the strength of inclusive association is stronger than that of hydrophobic one. The conclusion was proved by time-temperature superposition as well. It shows that the activation energy E a of the inclusion complex (CD:BHAM = 2:1), which represents the strength of association, has a maximum value, while the activation energy E b of P(AM/BHAM/NaA) has also a maximum one because of the multiple associative sites of hydrophobic associations. The activation energy values of the inclusion complex (CD:BHAM = 1:1) are intermediate since there are two kinds of associations in this solution. This is exactly the reason that the complex (CD:BHAM = 1:1) has the best emulsifying property. Moreover, the conclusions related to emulsifying property have been verified by using a laser particle size analyzer and Turbiscan lab stability.  相似文献   
6.
2,4,4‐Triméthyl‐2‐oxazoline was polymerized, using an acid exchanged montmorillonite clay as catalyst, with the aim to study the influence of the methyl group size in the initiation and propagation processes. The effect of amount of catalyst temperature, time, and solvent on the polymerization yield and viscosity of the polymers were studied. The polymers obtained were characterized by spectrometric methods and their average molecular weights were determined by viscosimetrie and GPC data. The polymers presented similar spectrometric results and narrow molecular weight distributions. The kinetics indicated that the polymerization rate is first order with respect to monomer concentration. The polymerization results showed that the methyl groups present in the monomer affected the initiation process. Mechanism studies showed that polymerization of TMOX involves nucleophilic ring opening by attack of nitrogen to cleave the CH2? O bond of the oxazoline ring. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1792–1800, 2007  相似文献   
7.
In this work, a new 3D crystalline metal–organic framework formulated as [Zn2(BTC)4, (BTC: 1,2,4,5-Benzenetetracarboxylate)] and called LCP-1 (LCP: Laboratoire de Chimie des Polymères), with unsaturated coordinated Zn(II) sites as metal ion and pyromellitic acid (H4BTC: 1,2,4,5-Benzenetetracarboxylic acid) as organic ligand, has been successfully synthesized under solvothermal conditions. In-Situ polymerization of this material was also carried out using an amount of clay called Maghnite-H+, an acid-exchanged montmorillonite, as an eco-catalyst with the aim to respect the principles of green chemistry, to give a new hybrid composite material LCP-1/Mag-H+ with a better yield, a significantly reduced time and temperature reaction than those of LCP-1. LCP-1 and LCP-1/Mag-H+ have been structurally characterized and established by fourier transform infrared spectroscopy (FT-IR). The morphology of these compounds was studied by the X-ray diffraction (XRD) and revealed a highly crystalline and ordered structure for both LCP-1 and LCP-1/Mag-H+. FT-IR and XRD spectra showed also that the stability and structural integrity of LCP-1 and LCP-1/Mag-H+ was maintained even after being evacuated from the DMF solvent molecules. The thermal stability identified by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) showed that Maghnite-H+, as inorganic support, has also improved the thermal stability of LCP-1 compound.  相似文献   
8.
The nature of irregularities and end‐groups in poly(styrene oxide) samples prepared using Maghnite‐H+ as a cationic catalyst were studied by 1H‐ and 13C‐NMR at 200 MHz. Head‐to‐head (H‐H) and tail‐to‐tail (T‐T) irregularities are detected in all the samples studied. Secondary hydroxyl terminal groups are identified in polymers prepared with Maghnite‐H+. Poly(styrene oxide) was found to undergo chain scission by aging at 25°C. It was confirmed that oxidation of this type of polymers results from the important sensitivity of the polyether soft segment to oxidative degradation. For this reason, the scissions due to the oxidation of the material lead to notable quantities of low molecular weight photoproducts. Among the various structures produced by the oxidative degradation process, benzoate and secondary hydroxyl groups are identified by MALDI‐TOF‐MS. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   
9.
A new method of preparation of poly(alkylene H‐phosphonate)s by ring‐opening bulk polymerization of the five‐ and six‐membered cyclic phosphonates monomers using the nontoxic Maghnite‐H+ as the initiator is described. Cyclic phosphonate monomers have been first synthesized. In particular, a new one‐step synthesis of 2‐hydro‐2‐oxo‐1,3,2‐dioxaphospholane is reported with a yield of 70%. The efficiency of the montmorillonite sheet silicate clay which exchanged with protons, called Maghnite‐H+, as cationic initiator has been proved and the resulting biomimetic poly(alkylene H‐phosphonate)s have been characterized. The Maghnite‐H+ regenerated after one turn‐over has showed to be still efficient as initiator for the ring‐opening polymerization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
10.
4-Chloroaniline (4ClAni) in the presence of zinc oxide (ZnO) nanoparticles were prepared by chemical oxidative polymerization in hydrochloric acid solution using Ammonium persulfate as oxidant. The effects of amount of ZnO nanoparticles (1, 1.5, 2, 2.5 and 3 g, respectively) on the properties of products were investigated. The obtained nanocomposites was characterized using XRD, IR, UV–visible, and XPS which confirmed the incorporation of the nanoparticle ZnO in the P(4ClAni) matrix and the maximum interaction occurs for 2 g ZnO loading. The TGA analysis was used to confirm the thermal stability and number of water molecules in each nanocomposites chain unit. Although the incorporation of ZnO nanoparticles reduces the electric conductivity of the P(4ClAni), the resulting nanocomposites still keep high conductivities, ranging between 2.19 × 10?2 and 5.92 × 10?4 S cm?1. Good electrochemical response has been observed for samples of amounts ZnO less than 2 g; the observed redox processes indicate that the polymerization on ZnO nanoparticles produces electroactive polymers. The P(4ClAni) layer adhered well to the ZnO nanoparticles and can be used as practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号