首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
自动化技术   12篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
Problems of testing program systems modeled by deterministic finite automata are considered. The necessary (and, sometimes, sufficient) component of such testing is a traversal of the graph of the automaton state transitions. The main attention is given to the so-called irredundant traversal algorithms (algorithms for traversing unknown graphs, or on-line algorithms), which do not require an a priori knowledge of the total graph structure.  相似文献   
2.
A covering path in a directed graph is a path passing through all vertices and arcs of the graph, with each arc being traversed only in the direction of its orientation. A covering path exists for any initial vertex only if the graph is strongly connected, i.e., any of its vertices can be reached from any other vertex by some path. The strong connectivity is the only restriction on the considered class of graphs. As is known, on the class of such graphs, the covering path length is (nm), where n is the number of vertices and m is the number of arcs. For any graph, there exists a covering path of length O(nm), and there exist graphs with covering paths of the minimum length (nm). The traversal of an unknown graph implies that the topology of the graph is not a priori known, and we learn it only in the course of traversing the graph. At each vertex, one can see which arcs originate from the vertex, but one can learn to which vertex a given arc leads only after traversing this arc. This is similar to the problem of traversing a maze by a robot in the case where the plan of the maze is not available. If the robot is a general-purpose computer without any limitations on the number of its states, then traversal algorithms with the same estimate O(nm) are known. If the number of states is bounded, then this robot is a finite automaton. Such a robot is an analogue of the Turing machine, where the tape is replaced by a graph and the cells are assigned to the graph vertices and arcs. Currently, the lower estimate of the length of the traversal by a finite robot is not known. In 1971, the author of this paper suggested a robot with the traversal length O(nm + n 2logn). The algorithm of the robot is based on the construction of the output directed spanning tree of the graph and on the breadth-first search (BFS) on this tree. In 1993, Afek and Gafni [1] suggested an algorithm with the same estimate of the covering path length, which was also based on constructing a spanning tree but used the depth-first search (DFS) method. In this paper, an algorithm is suggested that combines the breadth-first search with the backtracking (suggested by Afek and Gafni), which made it possible to reach the estimate O(nm + n 2loglogn). The robot uses a constant number of memory bits for each vertex and arc of the graph.  相似文献   
3.
Formal methods for testing the conformance of a software system to its specification are considered. The interaction semantics determines the testing capabilities, which are reduced to the observation of actions and refusals (absence of actions). The semantics is parameterized by the families of observable and unobservable refusals. The concept of destruction as a prohibited action that should be avoided in the course of interaction is introduced. The concept of safe testing, the implementation safety hypothesis, safe conformance, and generation of a complete test suite based on the specification are defined. Equivalences of traces, specifications, safety relations, and interaction semantics are examined. A specification completion is proposed that can be used to remove from the specification irrelevant (not included in the safely testable implementations) and nonconformal specification traces is proposed. The concept of total testing that detects all the errors in the implementation (rather than at least one error as is the case in complete testing) is introduced. On the basis of the analysis of dependences between errors, a method for the minimization of test suites is proposed. The problem of preserving the conformance under composition (the monotonicity of conformance) is investigated, and a monotone transformation of the specification solving this problem is proposed.  相似文献   
4.
Formal methods for testing conformance of the system under examination to its specification are examined. The operational interaction semantics is specified by a special testing machine that formally determines the testing capabilities. A set of theoretically powerful and practically important capabilities is distinguished that can be reduced to the observation of external actions and refusals (the absence of external actions). The novelties are as follows. (1) Parameterization of the semantics by the families of observable and not observable refusals, which makes it possible to take into account various constraints on the (correct) interactions. (2) Destruction as a forbidden action, which is possible but should not be performed in the case of a correct interaction. (3) Modeling of the divergence by the Δ-action, which also should be avoided in the case of a correct interaction. On the basis of this semantics, the concept of safe testing, the implementation safety hypothesis, and the safe conformance relation are proposed. The safe conformance relation corresponds to the principle of independent observations: a behavior of an implementation is correct or incorrect independently of its other possible behaviors. For a more narrow class of interactions, another version of the semantics based on the ready traces may be used along with the corresponding conformance relation. Some propositions concerning the relationships between the conformance relations under various semantics are formulated. The completion transformation that solves the problem of the conformance relation reflexivity and a monotone transformation that solves the monotonicity problem (preservation of the conformance under composition) are defined.  相似文献   
5.
In our previous paper [1], a new model of a Labeled Transition System (LTS)-type implementation was proposed. In ordinary LTSs, transitions are labeled by actions; therefore, they can be called LTSs of actions. The new model is an LTS of observations; in this model, observations and test actions (buttons) are used instead of actions. This model generalizes many testing semantics that are based on the LTS of actions but use additional observations (refusals, ready sets, etc.). Moreover, systems with priority, which are not described by the LTS of actions, are simulated uniformly. In the present paper, we develop this approach by focusing on the composition of systems. The point is that, on observation traces, one cannot define a composition with respect to which a composition of LTSs would possess the property of additivity: the set of traces of a composition of LTSs coincides with the set of all pairwise compositions of traces of LTS operands. This is explained by the fact that an observation in a composition state is not calculated based on observations in states-operands. In this paper, we propose an approach that eliminates this drawback. To this end, we label the transitions of LTSs by symbols (events) that, on the one hand, can be composed to guarantee the property of additivity, and, on the other hand, can be used to generate observations under testing: a transition by an event gives rise to an observation related to this event. This model is called an LTS of events. In this paper, we define (1) a transformation of an LTS of events into an LTS of observations to conform with the principles of our previous paper [1]; (2) a composition of LTSs of events; (3) a composition of specifications that preserves conformance: a composition of conformal implementations is conformal to a composition of specifications; and (4) a uniform simulation of LTSs of actions in terms of the LTSs of events, which allows one to consider an implementation in any interaction semantics admissible for LTSs of actions. In this case, a composition of LTSs of events obtained as a result of simulation of the original LTSs of actions is equivalent to the LTS of events obtained as a result of simulation of the composition of these LTSs of actions.  相似文献   
6.
A covering path in a directed graph is a path passing through all vertices and arcs of the graph, with each arc being traversed only in the direction of its orientation. A covering path exists for any initial vertex only if the graph is strongly connected. The traversal of an unknown graph implies that the topology of the graph is not a priori known, and we learn it only in the course of traversing the graph. This is similar to the problem of traversing a maze by a robot in the case where the plan of the maze is not available. If the robot is a general-purpose computer without any limitations on the number of its states, then traversal algorithms with the estimate O(nm) are known, where n is the number of vertices and m is the number of arcs. If the number of states is finite, then this robot is a finite automaton. Such a robot is an analogue of the Turing machine, where the tape is replaced by a graph and the cells are assigned to the graph vertices and arcs. The selection of the arc that has not been traversed yet among those originating from the current vertex is determined by the order of the outgoing arcs, which is a priori specified for each vertex. The best known traversal algorithms for a finite robot are based on constructing the output directed spanning tree of the graph with the root at the initial vertex and traversing it with the aim to find all untraversed arcs. In doing so, we face the backtracking problem, which consists in searching for all vertices of the tree in the order inverse to their natural partial ordering, i.e., from the leaves to the root. Therefore, the upper estimate of the algorithms is different from the optimal estimate O(nm) by the number of steps required for the backtracking along the outgoing tree. The best known estimate O(nm + n 2loglogn) has been suggested by the author in the previous paper [1]. In this paper, a finite robot is suggested that performs a backtracking with the estimate O(n 2log*(n)). The function log* is defined as an integer solution of the inequality 1 log2 log*(n) < 2, where log t = log º log º ... º log (the superposition º is applied t – 1 times) is the tth compositional degree of the logarithm. The estimate O(nm + n 2log*(n)) for the covering path length is valid for any strongly connected graph for a certain (unfortunately, not arbitrary) order of the outgoing arcs. Interestingly, such an order of the arcs can be marked by symbols of the finite robot traversing the graph. Hence, there exists a robot that traverses the graph twice: first traversal with the estimate O(nm + n 2loglogn) and the second traversal with the estimate O(nm + n 2log*(n)).  相似文献   
7.
The article introduces an extension of the well-known conformance relation ioco on labeled transition systems (LTS) with refused inputs and forbidden actions. This extension helps to apply the usual formal testing theory based on LTS models to incompletely specified systems, which are often met in practice. Another topic concerned in the article is compositional conformance. More precisely, we try to define a completion operation that turns any LTS into input-enabled one having the same set of ioco-conforming implementations. Such a completion enforces preservation of ioco conformance by parallel composition operation on LTSes.  相似文献   
8.
The paper is devoted to the ioco relation, which determines conformance of an implementation to the specification. Problems related to nonreflexivity of the ioco relation, presence of nonconformal traces (which are lacking in any conformal implementation) in the specification, lack of the ioco preservation upon composition (composition of implementations conformal to their specifications may be not conformal to the composition of these specifications), and “false” errors when testing in a context are considered. To solve these problems, an algorithm of specification completion preserving ioco is proposed (the class of conformal implementations is preserved). The above-specified problems are lacking in the class of completed specifications.  相似文献   
9.
10.
An approach to the problem of complete testing is proposed. Testing is interpreted as the check of an implementation’s conformance to the given requirements described by a specification. The completeness means that a test suite finds all the possible implementation errors. In practice, testing must end in a finite amount of time. In the general case, the requirements of completeness and finiteness contradict each other. However, finite complete test suites can be constructed for certain classes of implementations and specifications provided that there are specific test capabilities. Test algorithms are proposed for finite specifications and finite implementations with limited nondeterminism for the case of open-state testing. The complexity of those algorithms is estimated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号