首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   8篇
电工技术   2篇
化学工业   11篇
能源动力   10篇
无线电   13篇
一般工业技术   19篇
冶金工业   6篇
原子能技术   1篇
自动化技术   8篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   5篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
A tunable dual-band quadrature hybrid coupler for mobile GSM bands (900 and 1800MHz) is proposed and characterized. The structure is composed of four quarter-wavelength sections at a frequency located between the two operating frequencies and two pairs of open-ended stubs. Frequency tuning is achieved by modifying the electrical length of the open-ended stubs with varactor-diode capacitors. A dual-band tunability of 33% and 10% is obtained for the first and the second bands, respectively  相似文献   
2.
In this research, the biosorption of phenol using the fibres of a Mediterranean seagrass Posidonia oceanica (L.) was studied. Batch experimental procedures were made to investigate the ability of this novel marine biomass to remove phenol from aqueous phase. The influences of pH and contact time at different initial concentrations were evaluated. The results showed that biosorption capacity was enhanced using solution pH equal to 5.2. The modelling results showed that pseudo‐second‐order and Redlich‐Peterson models were found to be the most suitable to satisfactory describe the kinetic and equilibrium adsorption data, respectively.  相似文献   
3.
The slow wave effect can be obtained by a capacitively loaded structure with a symmetrical interdigital line connected on both sides of the coplanar waveguide (CPW) central line. The ferroelectric thin film with high dielectric constant can reduce the size of circuit and make it possible to realize tunable devices such as filter by applying voltage on it. Actually, this kind of slow wave structure is a periodic guided‐wave structure and can be analyzed by using classic finite difference frequency domain (FDFD) method for periodic guided‐wave structures. However, the very compact slow‐wave structures will usually result in simulation errors when the classic FDFD method is adopted, which will lead to a nonsymmetrical generalized eigenvalue problem. In this article, the shift‐and‐invert (SI) Arnoldi method is used to directly resolve this nonsymmetrical generalized eigenvalue problem. As a result, the accuracy of FDFD algorithm is improved. Especially for the large scale eigenvalue problem, SI method can also have a very fast speed of calculation. By means of its complex propagation constant obtained from simulation, one can extract circuit parameters of the interdigital capacitor. Consequently, one can analyze and design relevant resonators and filters in a quick and accurate manner, which are constructed with such interdigital slow wave structures. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   
4.
Efficiently harvesting solar energy for photocatalysis remains very challenging. Rational design of architectures by combining nanocomponents of radically different properties, for example, plasmonic, upconversion, and photocatalytic properties, offers a promising route to improve solar energy utilization. Herein, the synthesis of novel, plasmonic Au nanoparticle decorated NaYF4:Yb3+, Er3+, Tm3+‐core@porous‐TiO2‐shell microspheres is reported. They exhibit high surface area, good stability, broadband absorption from ultraviolet to near infrared, and excellent photocatalytic activity, significantly better than the benchmark P25 TiO2. The enhanced activity is attributed to synergistic effects from nanocomponents arranged into the nanostructured architecture in such a way that favors the efficient charge/energy transfer among nanocomponents and largely reduced charge recombination. Optical and energy‐transfer properties are modeled theoretically to support our interpretations of catalytic mechanisms. In addition to yielding novel materials and interesting properties, the current work provides physical insights that can contribute to the future development of plasmon‐enhanced broadband catalysts.  相似文献   
5.
6.
7.
In this work, the assumption of local thermodynamic equilibrium (LTE) for a laser-induced plasma in ambient air is examined experimentally using two different laser systems, namely an infrared short-pulse Ti : Sapphire laser and an ultraviolet long-pulse XeCl excimer laser. The LTE assumption is investigated by examining the plasma produced at a laser fluence of 10 J/cm(2) from aluminum targets containing iron and magnesium impurities. The excitation temperature is deduced from Boltzmann diagrams built from a large number of spatially integrated neutral iron lines distributed from 3.21 to 6.56 eV. It is shown that at any time after the end of the laser pulse, the neutral excited states are in excellent Boltzmann equilibrium. Detailed investigation of Boltzmann equilibrium further validates previous temperature measurements using less accurate diagrams. However, observations of ion lines provide some evidence that the ionized species do not obey Saha equilibrium, thereby indicating departure from LTE. This could be explained by the fact that the plasma cannot be considered as stationary for these species.  相似文献   
8.
The ablated depth and volume per laser pulse from an aluminum target were measured for pulse durations that ranged from 80 fs to 270 ps at an average fluence of approximately 100 J/cm2 and a wavelength of 0.8 microm. The ablated volume showed a flat maximum for subpicosecond pulses and a minimum for approximately 6 ps. The crater diameters were rather constant up to pulse durations of approximately 6 ps and increased for larger pulse durations. As a result, the ablated depth also showed a plateau for subpicosecond pulses but decreased monotonically with pulse duration. A physical interpretation of these results and their consequences for laser applications are discussed.  相似文献   
9.
A 2D/2D heterojunction of black phosphorous (BP)/graphitic carbon nitride (g‐C3N4) is designed and synthesized for photocatalytic H2 evolution. The ice‐assisted exfoliation method developed herein for preparing BP nanosheets from bulk BP, leads to high yield of few‐layer BP nanosheets (≈6 layers on average) with large lateral size at reduced duration and power for liquid exfoliation. The combination of BP with g‐C3N4 protects BP from oxidation and contributes to enhanced activity both under λ > 420 nm and λ > 475 nm light irradiation and to long‐term stability. The H2 production rate of BP/g‐C3N4 (384.17 µmol g?1 h?1) is comparable to, and even surpasses that of the previously reported, precious metal‐loaded photocatalyst under λ > 420 nm light. The efficient charge transfer between BP and g‐C3N4 (likely due to formed N? P bonds) and broadened photon absorption (supported both experimentally and theoretically) contribute to the excellent photocatalytic performance. The possible mechanisms of H2 evolution under various forms of light irradiation is unveiled. This work presents a novel, facile method to prepare 2D nanomaterials and provides a successful paradigm for the design of metal‐free photocatalysts with improved charge‐carrier dynamics for renewable energy conversion.  相似文献   
10.
Understanding the attentional behavior of the human visual system when visualizing a rendered 3D shape is of great importance for many computer graphics applications. Eye tracking remains the only solution to explore this complex cognitive mechanism. Unfortunately, despite the large number of studies dedicated to images and videos, only a few eye tracking experiments have been conducted using 3D shapes. Thus, potential factors that may influence the human gaze in the specific setting of 3D rendering, are still to be understood. In this work, we conduct two eye‐tracking experiments involving 3D shapes, with both static and time‐varying camera positions. We propose a method for mapping eye fixations (i.e., where humans gaze) onto the 3D shapes with the aim to produce a benchmark of 3D meshes with fixation density maps, which is publicly available. First, the collected data is used to study the influence of shape, camera position, material and illumination on visual attention. We find that material and lighting have a significant influence on attention, as well as the camera path in the case of dynamic scenes. Then, we compare the performance of four representative state‐of‐the‐art mesh saliency models in predicting ground‐truth fixations using two different metrics. We show that, even combined with a center‐bias model, the performance of 3D saliency algorithms remains poor at predicting human fixations. To explain their weaknesses, we provide a qualitative analysis of the main factors that attract human attention. We finally provide a comparison of human‐eye fixations and Schelling points and show that their correlation is weak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号