首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学工业   1篇
金属工艺   1篇
机械仪表   2篇
一般工业技术   2篇
自动化技术   2篇
  2021年   1篇
  2020年   1篇
  2010年   1篇
  2009年   1篇
  2006年   3篇
  2003年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
In this paper, the selective induction heating technology is applied to glass–glass and glass–silicon solder bonding for MOEMS (optical MEMS) packaging. The Ni bumping with a buffer layer is successful to release the thermal stress for avoiding delamination. The Au wetting layer must be thick enough to prevent from being solved entirely into Sn, and it will improve bonding strength. The bonding specimens are soaked into 25°C water and placed into 85°C/85% RH oven, respectively. No moisture penetrates into the cavity after 1 day in both test conditions. In the test condition of 125°C leakage-test liquid (Galden HS260), no bubble is observed. The lowest bonding strength is 3 MPa.  相似文献   
2.
An appropriate calibration positioning method is imperative to examine localized tip on nanoscale patterns for scanning probe microscopy (SPM). This paper is to develop a new nanofabrication processes for AFM tip positioning with image stitching method in tip plowing technology. Moreover, this paper adjusts the set-point amplitude (A(sp)) to develop the tip plowing technology for fabricating nanopattern on 55 nm grating gage of a silicon substrate. The developed image stitching program is based on an iterative closet point (ICP) algorithm which has six degrees of freedom alignment. A closed-loop piezo motor is used to tip approach and plow in Z-axis. Experimental result of fabricating nanobagua on 55 nm grating of silicon substrate show that the developed positioning processes with image stitching method verify the feasibility of repeatability for the tip plowing technology successfully. This developed method can be further performed by a commercial atomic force microscope (AFM) with CAD/CAM. This technology can also be applied in dip pen nanolithography (DPN), SPM oxidation lithography and related fabrication technology with AFM tips.  相似文献   
3.
Recently, sapphire has been used in a wide range of applications including optics, consumer electronics, and especially the rapidly growing LED wafer manuf  相似文献   
4.

In this paper, the selective induction heating technology is applied to glass–glass and glass–silicon solder bonding for MOEMS (optical MEMS) packaging. The Ni bumping with a buffer layer is successful to release the thermal stress for avoiding delamination. The Au wetting layer must be thick enough to prevent from being solved entirely into Sn, and it will improve bonding strength. The bonding specimens are soaked into 25°C water and placed into 85°C/85% RH oven, respectively. No moisture penetrates into the cavity after 1 day in both test conditions. In the test condition of 125°C leakage-test liquid (Galden HS260), no bubble is observed. The lowest bonding strength is 3 MPa.

  相似文献   
5.
Demands for substrate and film surface planarizations significantly increase as the feature sizes of Integrated Circuit (IC) components continue to shrink. Chemical Mechanical Polishing (CMP), incorporating chemical and mechanical interactions to planarize chemically modified surface layers, has been one of the major manufacturing processes to provide global and local surface planarizations in IC fabrications. Not only is the material removal rate a concern, the qualities of the CMP produced surface are critical as well, such as surface finish, defects and surface stresses. This paper is to examine the CMP produced surface roughness on tungsten or W thin films based on the CMP process conditions. The W thin films with thickness below 1000 nm on silicon wafer were chemical–mechanical polished at different down pressures and platen speeds to produce different surface roughness. The surface roughness measurements were performed by an atomic force microscope (DI D3100). Results show that the quality of surface finish (Ra value) is determined by the combined effects of down pressures and platen speeds. An optimal polishing condition is, then, possible for selecting the down pressures and platen speeds.  相似文献   
6.
7.
This study investigates the possibilities of automated spherical grinding and ball burnishing surface finishing processes in a freeform surface plastic injection mold steel PDS5 on a CNC machining center. The design and manufacture of a grinding tool holder has been accomplished in this study. The optimal surface grinding parameters were determined using Taguchi’s orthogonal array method for plastic injection molding steel PDS5 on a machining center. The optimal surface grinding parameters for the plastic injection mold steel PDS5 were the combination of an abrasive material of PA Al2O3, a grinding speed of 18000 rpm, a grinding depth of 20 μm, and a feed of 50 mm/min. The surface roughness Ra of the specimen can be improved from about 1.60 μm to 0.35 μm by using the optimal parameters for surface grinding. Surface roughness Ra can be further improved from about 0.343 μm to 0.06 μm by using the ball burnishing process with the optimal burnishing parameters. Applying the optimal surface grinding and burnishing parameters sequentially to a fine-milled freeform surface mold insert, the surface roughness Ra of freeform surface region on the tested part can be improved from about 2.15 μm to 0.07 μm.  相似文献   
8.
Mechano-chemical polishing of silicon wafers   总被引:2,自引:0,他引:2  
Rapid progress in recent IC fabrication industry has increased the demand of tight specification of non-uniformity (NU) and surface polishing in silicon wafer planarization. Chemical–mechanical polishing (CMP) is currently the most popular method for IC wafer planarization. However, the sub-surface damage problem caused by hard abrasives and chemical waste problem of CMP have decreased the throughput and increased the cost of IC fabrication. This study is to investigate the mechano-chemical polishing (MCP) of silicon wafers by slurry of soft abrasives, BaCO3 and through experiments to verify that the solid phase chemical reaction (SPCR) is the main reaction process involved in MCP. A planarization mechanism with compliance has been designed and tested through MCP experiments. Experimental results of MCP of silicon wafers have achieved the average of surface roughness improvement ratio (SRIR) to 99% and the surface roughness Ra=0.633 nm measured by atomic force microscope (AFM). The material removal rate (MRR) has been calculated and the significant influence of slurry weight percent and polishing pressure have been found. The NU has also been estimated for evaluation of MCP parameters. The sub-surface damage of silicon wafer has not yet been found in experimental results and hence the MCP process of silicon wafers has been verified to become a green or environment-friendly technology of silicon wafer planarization.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号