首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   2篇
金属工艺   1篇
建筑科学   1篇
  2018年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A test system was developed to understand the sliding mechanism of coal-rock structure. The test system was composed by a double-shear testing model and an acousto-optic monitoring system in association with a digital camera and an acoustic emission (AE) instrument. The tests can simulate the movement of activated faults and the sliding in coal-rock structure. In this regard, instable sliding conditions of coal- rock samples, sliding types under different conditions, displacement evolution law, and AE character- istics during sliding process were investigated. Several sliding types were monitored in the tests, including unstable continuous sliding, unstable discontinuous sliding, and stable sliding. The sliding types have close relation with the axial loads and loading rates. Larger axial load and smaller loading rate mean that unstable sliding is less likely to occur. The peak shear stress was positively correlated with the axial load when sliding occurred, whereas the displacement induced by unstable sliding was uncorre- lated with the axial load. A large number of AE events occurred before sliding, and the AE rate decreased after stable sliding. The results show that the tests can well simulate the process of structural instability in a coal bump, and are helpful in the understanding of fault activation and the physical processes during squeezing process of roof and floor.  相似文献   
2.
Porthole die extrusion is the dominant process to produce hollow profiles due to its high productivity and capacity in producing complex profiles. In this study, the finite element simulation model of porthole die extrusion of LZ91 Mg-Li alloy was established. The effects of extrusion ratio on strain, temperature and flow velocity were studied, and the welding quality was quantitatively evaluated by means of J criterion. The experiments of porthole die extrusion were carried out by varying extrusion ratios. The microstructures of as-cast, homogenized and extruded LZ91 Mg-Li alloy were examined. The results show that the materials near the bridge surface and at the bottom of the bridge have large deformation, while the materials inside the portholes have small deformation. Moreover, with the increase of extrusion ratio, the effective strain of material is increased. Due to the heat generated by plastic deformation and the heat dissipation caused by profile cooling, the temperature of the material on the top of bridge is increased, while that of the material near the die exit becomes lower. The welding quality in the central area of weld seam is lower than that in the edge area of weld seam. With the increase of extrusion ratio, the welding quality is improved. More nucleation is generated in welding zone due to its large strain, resulting in the formation of fine grains. However, the dynamic recrystallization is not complete in the matrix zone, and some coarse grains still remain. Moreover, the material temperature becomes higher with high extrusion ratio, and the phenomenon of grain growth is observed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号