首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   3篇
  国内免费   1篇
电工技术   1篇
化学工业   16篇
金属工艺   4篇
机械仪表   6篇
建筑科学   4篇
能源动力   3篇
轻工业   3篇
无线电   33篇
一般工业技术   31篇
冶金工业   2篇
自动化技术   5篇
  2023年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   7篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2002年   5篇
  2001年   6篇
  2000年   5篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
2.
Cordierite/ZrO2 composites with 5 to 25 wt% ZrO2 were fabricated by conventional powder mixing and pressureless sintering method. Their densification behavior, microstructure, mechanical and thermal properties were studied. By dispersing 25 wt% (9.57 vol%) ZrO2, densified cordierite/ZrO2 composite with a relative density of 98.5% was obtained at an optimum sintering condition of 1440 °C and 2 h. ZrO2 particles were homogenously dispersed within matrix grains and at the grain boundaries. The intragranular particles were finer than 100 nm and the intergranular particles were coarser. Both fracture strength and toughness could be enhanced more than two times higher, compare to those of monolithic cordierite, by dispersing 25 wt% ZrO2 into the cordierite matrix. The toughening mechanism in the present composites was mainly attributed to martensitic transformation due to ZrO2 dispersion. Electronic Publication  相似文献   
3.
We demonstrate stable operation of a NOLM using orthogonally polarized control and signal beams in nonpolarization-preserving, single-mode fiber. The NOLM can transcribe data from an optically incoherent input at one wavelength to a coherent output over a range of wavelengths. Operation of the NOLM without tuning for the input bit rate is possible over a range of bit rates from less than 1 Gb/s to more than 50 Gb/s.  相似文献   
4.
The present study introduces a systematic approach to disperse graphene oxide (GO) during emulsion polymerization (EP) of Polyaniline (PANI) to form nanocomposites with improved electrical conductivities. PANI/GO samples were fabricated by loading different weight percents (wt%) of GO through modified in situ EP of the aniline monomer. The polymerization process was carried out in the presence of a functionalized protonic acid such as dodecyl benzene sulfonic acid, which acts both as an emulsifier and protonating agent. The microstructure of the PANI/GO nanocomposites was studied by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, UV–Vis spectrometry, Fourier transform infrared, differential thermal, and thermogravimetric analyses. The formed nanocomposites exhibited superior morphology and thermal stability. Meanwhile, the electrical conductivities of the nanocomposite pellets pressed at different applied pressures were determined using the four-probe analyzer. It was observed that the addition of GO was an essential component to improving the thermal stability and electrical conductivities of the PANI/GO nanocomposites. The electrical conductivities of the nanocomposites were considerably enhanced as compared to those of the individual PANI samples pressed at the same pressures. An enhanced conductivity of 474 S/m was observed at 5 wt% GO loading and an applied pressure of 6 t. Therefore, PANI/GO composites with desirable properties for various semiconductor applications can be obtained by in situ addition of GO during the polymerization process.  相似文献   
5.
The balanced operation of a multiple-quantum-well balanced heterodyne receiver photonic integrated circuit (PIC) is described. Using only SMA-connected 50 Ω commercial electronics, a free-space beam sensitivity of -42.3 dBm at 108 Mb/s and -39.7 dBm at 200 Mb/s for NRZ FSK (frequency-shift keying) reception has been achieved. This represents a 14 dB improvement over any previous heterodyne receiver PIC sensitivity. In addition to providing the multichannel benefits of heterodyne reception, this is also the highest sensitivity yet reported for any OEIC (optoelectronic integrated circuit) receiver  相似文献   
6.
Bismuth (Bi) and tellurium (Te) thin films were formed by galvanic displacement of different sacrificial iron group thin films [i.e. nickel (Ni), cobalt (Co) and iron (Fe)] where the formation was systematically investigated by monitoring the change of open circuit potential (OCP), surface morphology and microstructure. The surface morphologies and crystal structures of galvanically displaced Bi or Te thin films strongly depended on the type and thickness of the sacrificial materials. Continuous Bi thin films were successfully deposited with the sacrificial Co. However, dendrites and nanoplatelets were formed from the Ni and Fe thin films. Te thin films were synthesized with all the three sacrificial thin films. Chemical dissolution rate of the sacrificial thin films and mixed potential strongly influenced formation of Bi or Te thin films.  相似文献   
7.
A micro-machined gyro chip of gyroscope is normally packaged in specific vacuum level to get the specific quality factor(Q-factor). If the Q-factor is too high, frequency tuning and the approximate matching between driving and sensing comb structure become difficult, and if the Q-factor is too low, its sensitivity decreases. The optimum Q-factor of our gyro chip design is 4000 range. To get this range, we measured the drive mode Q-factor as vacuum level of our gyro chip and we found that the vacuum level of the desired Q-factor 4000 is in the range of 740 mTorr. Based on this data, we fabricate the wafer level package gyro chip of the desired Q-factor by controlled the basic pressure of package bonding chamber just prior to the bonding process. After wafer level package process, we measured Q-factor of whole samples. Among 804 samples, 502 packaged gyro chips are worked and the Q-factor of 67% samples is between 3500 and 4500 range.  相似文献   
8.
 In situ reaction of nickel and silicon carbide has been attempted to prepare alumina-based composites containing some kinds of dispersed phases. The composites were fabricated by reducing and sintering of Al2O3/NiO/SiC mixtures. Reaction products (Ni3Si and C) and metallic Ni were found to disperse at the matrix grain boundaries, while Ni was partly trapped into Al2O3 grains. In addition, carbon nanoballs encapsulating Ni3Si were produced and dispersed in the composites. The carbon cages were approximately 80–100 nm in diameter with polyhedral shape, and had lattice spacing of 0.35 nm that was typical for the graphite. Encapsulated Ni3Si had facet planes which were parallel to the carbon layers surrounding. Production of metal encapsulated carbon nanoball within ceramic materials is the first successive result that might promote researches on such novel ceramic composites. Received: 2 January 1997 / Accepted: 15 March 1997  相似文献   
9.
Temperature-dependent optical gain and waveguide loss have been measured for continuous-wave operated quantum-cascade lasers with wavelengths between 8.2 and 10.2 mum up to room temperature using the Hakki-Paoli method. The gain coefficient decreases with increasing temperature, and is close to the designed value for vertical transition lasers, but smaller than the designed value for diagonal transition lasers. The waveguide loss, however, is two to three times higher than calculated from free carrier absorption, and can be nearly constant, increase or decrease with temperature depending on sample design, which indicates that it is dominated by another mechanism other than plain free carrier absorption. One likely factor resulting in high waveguide loss is intersubband resonant absorption into higher lying states.  相似文献   
10.
A high‐performance, transparent, and extremely thin (<15 nm) hydrogen (H2) gas sensor is developed using 2D electron gas (2DEG) at the interface of an Al2O3/TiO2 thin film heterostructure grown by atomic layer deposition (ALD), without using an epitaxial layer or a single crystalline substrate. Palladium nanoparticles (≈2 nm in thickness) are used on the surface of the Al2O3/TiO2 thin film heterostructure to detect H2. This extremely thin gas sensor can be fabricated on general substrates such as a quartz, enabling its practical application. Interestingly, the electron density of the Al2O3/TiO2 thin film heterostructure can be tailored using ALD process temperature in contrast to 2DEG at the epitaxial interfaces of the oxide heterostructures such as LaAlO3/SrTiO3. This tunability provides the optimal electron density for H2 detection. The Pd/Al2O3/TiO2 sensor detects H2 gas quickly with a short response time of <30 s at 300 K which outperforms conventional H2 gas sensors, indicating that heating modules are not required for the rapid detection of H2. A wide bandgap (>3.2 eV) with the extremely thin film thickness allows for a transparent sensor (transmittance of 83% in the visible spectrum) and this fabrication scheme enables the development of flexible gas sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号