首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
电工技术   1篇
化学工业   1篇
能源动力   4篇
一般工业技术   1篇
自动化技术   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
排序方式: 共有9条查询结果,搜索用时 0 毫秒
1
1.
In this paper we provide an assessment of the water–energy nexus for Greece. More specifically, the amount of freshwater consumed per unit of energy produced is determined: for both conventional (lignite, diesel and fuel oil-fired) and advanced (combined operation of gas turbine) thermal power plants in the electricity generation sector; for extraction and refining activities in the primary energy production sector; and for the production of biodiesel that is used as a blend in the ultimately delivered automotive diesel fuel. In addition, the amount of electricity consumed for the purposes of water supply and sewerage is presented. In view of the expected effects of climate change in the Mediterranean region, the results of this study highlight the need for authorities to prepare a national strategy that will ensure climate resilience in both energy and water sectors of the country.  相似文献   
2.
An autonomous power system that exploits solar energy for the production of hydrogen through water electrolysis is fully assessed in terms of system implementation and optimal operating strategy. A 10 kWp photovoltaic array supplies energy to a PEM electrolyzer rated at 6.9 kWp. In order to maintain a smooth operation regardless of the inherent weather fluctuations, a 1000 Ah/24 V lead–acid accumulator stores energy excess and provides it when needed. The monitoring and control of the system is implemented through a Supervisory Control and Data Acquisition system (SCADA), while the interactions between electrical and chemical subsystems are addressed by a complete automation infrastructure. The mathematical models of each subsystem are validated based on real operational data and a model-based power management strategy is proposed and assessed through a parameter sensitivity analysis. Further on, an off-line optimization framework is evaluated regarding the optimal operation of the system in two diverse, but representative time periods. The optimal parameters are identified and their effect on hydrogen production and accumulator utilization is reported.  相似文献   
3.
The industrial domain is experiencing a so-called fourth industrial revolution in which the evergrowing complexity of manufacturing information, the increasing amount of knowledge and the use of web-oriented techniques, represent three crucial factors that are accelerating the growth of complexity of industrial systems. On the other hand, continuous-evolving requirements in industrial environments, due to technology outbreaks and a new global marketplace, have led to an on-going evolution of human resource management through the creation and adoption of alternative business models. In the past decade, semantic models such as ontologies have been proven to be effective for many knowledge-intensive applications, since they provide formal models of domain knowledge that can be exploited in different ways. For all these reasons, an innovative human resource optimisation (HRO) engine is introduced, which employs semantically enhanced information and conditional random field (CRFs) probabilistic models with knowledge derived from industrial shop floor level, and proposes the right person for the right job in real-time shop floor operations towards optimising decisions on how to implement and schedule either repeatedly or non-occurring tasks. Industrial information data flow and semantic enrichment were ensured through the combined use of a common interface data exchange model (CIDEM) and ontologies, after which a feasibility study at a chemical plant presented interesting preliminary results.  相似文献   
4.
The aim of this work is the development and experimental validation of a detailed dynamic fuel cell model using the gPROMS modeling environment. The model is oriented towards optimization and control and it relies on material and energy balances as well as electrochemical equations including semi-empirical equations. For the experimental validation of the model a fully automated and integrated hydrogen fuel cell testing unit was used. The predictive power of the model has been compared with the data obtained during load change experiments. A sensitivity analysis has been employed to reveal the most critical empirical model parameters that should be estimated using a systematic estimation procedure. Model predictions are in good agreement with experimental data under a wide range of operating conditions.  相似文献   
5.
6.
In this paper, an intelligent forecasting model, a recurrent neural network (RNN) with nonlinear autoregressive architecture, for daily and hourly solar radiation and wind speed prediction is proposed for the enhancement of the power management strategies (PMSs) of hybrid renewable energy systems (HYRES). The presented model (RNN) is applicable to an autonomous HYRES, where its estimations can be used by a central control unit in order to create in real time the proper PMSs for the efficient subsystems’ utilization and overall process optimization. For this purpose, a flexible network-based design of the HYRES is used and, moreover, applied to a specific system located on Olvio, near Xanthi, Greece, as part of Systems Sunlight S.A. facilities. The simulation results indicated that RNN is capable of assimilating the given information and delivering some satisfactory future estimation achieving regression coefficient from 0.93 up to 0.99 that can be used to safely calculate the available green energy. Moreover, it has some sufficient for the specific problem computational power, as it can deliver the final results in just a few seconds. As a result, the RNN framework, trained with local meteorological data, successfully manages to enhance and optimize the PMS based on the provided solar radiation and wind speed prediction and make the specific HYRES suitable for use as a stand-alone remote energy plant.  相似文献   
7.
The design of the automation system and the implemented operation control strategy in a stand-alone power system in Greece are fully analyzed in the present study. A photovoltaic array and three wind generators serve as the system main power sources and meet a predefined load demand. A lead-acid accumulator is used to compensate the inherent power fluctuations (excess or shortage) and to regulate the overall system operation, based on a developed power management strategy. Hydrogen is produced by using system excess power in a proton exchange membrane (PEM) electrolyzer and is further stored in pressurized cylinders for subsequent use in a PEM fuel cell in cases of power shortage. A diesel generator complements the integrated system and is employed only in emergency cases, such as subsystems failure. The performance of the automatic control system is evaluated through the real-time operation of the power system where data from the various subsystems are recorded and analyzed using a supervised data acquisition unit. Various network protocols were used to integrate the system devices into one central control system managing in this way to compensate for the differences between chemical and electrical subunits. One of the main advantages is the ability of process monitoring from distance where users can perform changes to system principal variables. Furthermore, the performance of the implemented power management strategy is evaluated through simulated scenarios by including a case study analysis on system abilities to meet higher than expected electrical load demands.  相似文献   
8.
The early detection of potential malfunctions at process systems can significantly reduce downtime and improve their overall operability. In that context, this paper demonstrates the behavior and response, through a comparative analysis, of novel data‐driven diagnosis methods for interdependent time series. The proposed real‐time slope statistic profile method utilizes a self‐adaptive sliding window based on a real‐time classification technique of linear trend profiles of both interdependent time series and internal condition so as to avoid misdetections. The calculation of the linear trend profile is based on a standard parametric linear trend test, and the selection of possible incidents is based on its two‐level cross‐checking. All possible combinations for the calculation of the trend test and cross‐checking are created to explore their efficiency. The proposed methods are tested against real data sets from a chemical process system of the Centre for Research and Technology Hellas/Chemical Process Energy and Resources Institute derived from specific scenarios during nominal operating conditions.  相似文献   
9.
The dynamical behaviour of a fuel cell feeding a boost converter is studied in this paper. A nonlinear model of the combined system is derived including the effect of the switching action of the converter. Using Filippov's theory, it is possible to analytically study the bifurcation patterns of the system and to demonstrate that the system loses stability through a period doubling bifurcation. To overcome this instability, we inject a high frequency sinusoidal signal into the system that forces the system to remain stable while at the same time retaining its basic slow scale properties (like the steady state error). This controller is simple to implement and does not require any special hardware. The stability analysis and new controller design method presented in this paper allow for the re-design of the converter to stabilize circuit operation with a substantially reduced inductor size, reducing the size and cost of the converter while maintaining its average currents and voltages and other circuit steady-state behaviour characteristics. The results are confirmed by using numerical and analytical tools.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号