首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
化学工业   8篇
金属工艺   2篇
机械仪表   2篇
一般工业技术   2篇
自动化技术   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
This article presents the SEM‐EDX and microFTIR study and the corrosion behavior of new five types of phosphated coatings obtained by coprecipitation in acid aqueous medium of some metal cations, pursuing the influence of the addition of other cations and a moderator of precipitation, on the uniformity and compactness of the layers and on the morphology of dendritic structure of Zn(II) and Fe(II) phosphates. Microsc. Res. Tech. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Magnetoelectric composites of xNiFe2O4–(1 ? x)Pb(Zr,Ti)O3 with x = 2, 5, 10, 20, 30% were prepared by citrate–nitrate combustion using PZT-based template powders. In order to ensure a better connectivity of dissimilar phases, we have used chemical methods for preparation in situ composites, followed by adequate sintering procedure. The structural, microstructural and functional properties of di-phase magnetoelectric composites of NiFe2O4–PZT are reported. The XRD analysis is demonstrating the synthesis of pure ferrite phase directly on the ferroelectric templates. An excellent mixing was obtained in the composite powders, as proved by a detailed SEM analysis.The magnetic and dielectric behaviors of the ceramic composites vary with the ratio of the two phases. The dielectric behavior is greatly influenced by the magnetic phase. The magnetoelectric (ME) coefficient was measured as a function of applied DC magnetic field. The maximum ME coefficient (dE/dH) varies from 0.0011 mV/(cm Oe) to 0.5 mV/(cm Oe) with increasing of NF addition.  相似文献   
3.
In the present work, it is shown how the controlled porosity can be exploited to obtain a compromise between a reduced permittivity down to a few hundreds and maintaining a high tunability level as in the dense material, to fulfill requirements for tunable applications. Nb‐doped Pb(Zr,Ti)O3 ceramics with porosity in the range 5%‐30% have been prepared by direct sintering method. X‐ray diffraction analysis and Rietveld refinement indicated a co‐existence of tetragonal and monoclinic phases in the porous ceramics. Dielectric properties revealed a gradual reduction in permittivity when increasing the porosity level, while maintaining low dielectric losses below 3%. The ferroelectric switching behavior is also influenced by the porosity level: a continuous reduction in the saturation and remnant polarization is observed with increasing porosity. The nonlinear dielectric properties of all the investigated ceramics preserve a high level of tunability in comparison with one of the dense material, irrespective of the porosity level, while zero field permittivity was decreased below 1000. An optimum behavior is found for the ceramic sample with 25% porosity, which shows a high tunability, smaller losses, and moderate dielectric constant (ε ~600).  相似文献   
4.
Nanocrystalline Ni1−xMnxFe2O4 (x = 0; 0.17; 0.34; 0.5) ferrite powders were successfully synthesized using the sol-gel combustion method, by using nitrates as cations source and citric acid (C6H8O7) as combustion/chelating agent. The reaction advancement was observed by means of IR absorption spectroscopy, by monitoring two characteristic bands for the spinel compounds at about 600 cm−1 and 400 cm−1, respectively. The as-synthesized powders were characterized by IR spectroscopy, X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The magnetic study shows that the saturation magnetization decreases with increasing the Mn addition, as result of the particle size reduction. The dielectric properties were measured as a function of frequency in the range of 10 Hz to 1 MHz. The real part of permittivity has values of ∼88 at 1 kHz and ∼7 at 1 Hz for x = 0. An increasing dielectric permittivity with increasing the amount of Mn is observed. For all the investigated compositions, both the real and imaginary parts of permittivity decrease with frequency.  相似文献   
5.
6.
Diphase magnetoelectric composites of CoFe2O4–Pb(ZrTi)O3 were prepared by citrate–nitrate combustion technique by using Pb(Zr,Ti)O3 template powders obtained by the mixed oxide method. Pure diphase powder composites with a good crystallinity were obtained after calcination. The composition and purity were maintained after sintering at temperature of 1100 °C/2 h, which ensured limited reactions at interfaces, while by sintering at 1250 °C/2 h, some small amounts of secondary phases identified as nonstoichiometric ZrO2?x resulted. The method allowed to produce diphase ceramics with homogeneous microstructures and a very good mixing of the two phases. The dielectric and magnetic investigation at room temperature confirmed the formation of composite ceramics with both dielectric and magnetic properties at room temperature, with permittivity and magnetization resulted as sum properties from the parent Pb(Zr,Ti)O3 and ferrite phases.  相似文献   
7.
The corrosion processes of mild steel immersed in river water were investigated. The reaction of the Bahlui River on common steel used in domestic and industrial installations was studied. The corrosion of mild steel is an extensive topic approached in different media, yet little information about river water as a corrosive has been reported. The experimental determinations were performed for short term immersion of four alloys in the laboratory. By using Tafel extrapolation and electrochemical impedance spectroscopy, the corrosion of the alloys was investigated. Scanning electron microscopy coupled with energy dispersive X-ray analysis and Fourier-transform infrared spectroscopy were employed to characterize the morphology of corrosion products and identify their phases. The corrosive activity of river water leads to the formation of inner compact and outer porous layers. The differences between corrosion products formed in the presence of underground and surface waters are described.  相似文献   
8.
9.
The preparation and properties of BaTiO3 nanostructured ceramics with porosity level in the range of percolation limit (33% and 37% porosity) produced by partial sintering of cubic nanoparticles are presented. Hydrothermally synthesized cuboid-like particles were produced by using Field-Assisted Sintering Technique facility in which temperature and pressure were selected to ensure the consolidation of mechanically stable porous nanoceramics, while preserving as much as possible the starting grain shape. Nanosized grains in the range of (10–40) nm and multiscale porosity ranging from a few nm to hundreds of nm were observed in the sintered ceramics. The dielectric constant of porous nanoceramics assumes low values of ~280–320 and shows a flat thermal response typical to nanostructured ceramics, without a net ferroelectric-paraelectric peak, followed by a Curie-Weiss dependence in the paraelectric state, with negative Curie Weiss temperatures and lowered Curie constant, as result of porosity and ultrafine grain size. A strong conductivity relaxation around room temperature related to air-ceramic interface phenomena indicated a possible sensitivity of these ceramics for gas sensing. Preliminary qualitative tests with saturated acetone vapours have shown a good response of both resistive and reactive components of such porous BaTiO3 nanoceramics and possible gas sensing interface-related mechanisms were discussed.  相似文献   
10.
Di-phase composite ceramics based on BaTiO3 with 5?vol% of Ag filler have been prepared by sintering the mixture of powders at temperatures above the silver melting point (1000?°C–1300?°C/2?h). As predicted by finite element calculations, the addition of metallic particles should produce a field concentration in some regions of the BaTiO3 matrix and therefore, an enhanced dielectric response with respect to pure BaTiO3. The role of oxygen vacancies on the dielectric relaxation mechanisms of Ag-BaTiO3 composites has been investigated. The sintering temperature of 1200?°C provided optimized ceramics with excellent dielectric properties, i.e. with low losses (tanδ?<?3%) and room temperature permittivity measured at 50?kHz exceeding 6500 (and above 13,000 at the Curie temperature), as result of a good densification (94% relative density) and a synergy effect of the metallic particles inclusions and ceramic grain size in the range of ≈1?μm, where BaTiO3 has a well-known maximum of its permittivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号