首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
一般工业技术   2篇
冶金工业   2篇
自动化技术   1篇
  2019年   1篇
  2018年   2篇
  1998年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Members of one class of organs--including kidney and lung--consist chiefly of repeating units, or subunits, similar in size and shape. Across species, both the number and size of repeating units may increase with increasing organ size. A simple model is proposed, relating the scaling of unit-size and unit-number to that of organ volume. The model makes three structural assumptions, the crucial one, biologically speaking, being that the numerical density of repeating units scales as does organ surface-to-volume ratio. Data were collected from the literature bearing on the number, diameter, total surface area and total volume of such repeating units (i.e., alveoli, air capillaries, renal tubules and glomeruli), for avian and mammalian lung and for mammalian kidney, each as a function of organ size. These data, after log-log transformation, were submitted to standard linear least squares regression analysis. The resultant slopes for nine different regression lines are in good agreement with the model predictions. This finding suggests, surprisingly, that organ scale-up, at least for selected organs, expressed in terms of repeating units, as a function of organ volume, in mammals and birds, and conceivably in other phyla, may be based on a small number of elementary structural principles.  相似文献   
2.
We recorded auditory-evoked magnetic responses with a whole-scalp 122-channel neuromagnetometer from seven adult patients with unilateral conductive hearing loss before and after middle ear surgery. The stimuli were 50-msec 1-kHz tone bursts, delivered to the healthy, nonoperated ear at interstimulus intervals of 1, 2, and 4 seconds. The mean preoperative pure-tone average in the affected ear was 57 dB hearing level; the mean postoperative pure-tone average was 17 dB. The 100-msec auditory-evoked response originating in the auditory cortex peaked, on average, 7 msecs earlier after than before surgery over the hemisphere contralateral to the stimulated ear and 2 msecs earlier over the ipsilateral hemisphere. The contralateral response strengths increased by 5% after surgery; ipsilateral strengths increased by 11%. The variation of the response latency and amplitude in the patients who underwent surgery was similar to that of seven control subjects. The postoperative source locations did not differ noticeably from preoperative ones. These findings suggest that temporary unilateral conductive hearing loss in adult patients modifies the function of the auditory neural pathway.  相似文献   
3.
4.
Dip pen nanolithography (DPN) is used to pattern single‐walled carbon nanotube (SWCNT) lines between the n‐type Si and SWCNT film in SWCNT/Si solar cells. The SWCNT ink composition, loading, and DPN pretreatment are optimized to improve patterning. This improved DPN technique is then used to successfully pattern >1 mm long SWCNT lines consistently. This is a 20‐fold increase in the previously reported direct‐patterning of SWCNT lines using the DPN technique, and demonstrates the scalability of the technique to pattern larger areas. The degree of the uniformity of SWCNTs in these lines is further characterized by Raman spectroscopy and scanning electron microscopy. The patterned SWCNT lines are used as thin conductive pathways in SWCNT/Si solar cells, similar to front contact electrodes. The critical parameters of these solar cells are measured and compared to control cells without SWCNT lines. The addition of SWCNT lines increases power conversion efficiency by 40% (relative). Importantly, the SWCNT lines reduce average series resistance by 44%, and consequently increase average fill factor by 24%.  相似文献   
5.
Universal Access in the Information Society - Nowadays, the development of Web applications supporting distributed user interfaces (DUI) is straightforward. However, it is still hard to find Web...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号