首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
无线电   1篇
一般工业技术   6篇
自动化技术   1篇
  2023年   1篇
  2022年   1篇
  2014年   1篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
排序方式: 共有8条查询结果,搜索用时 234 毫秒
1
1.
2.
The chemical synthesis and characterization of the first hybrid material composed by gold nanoparticles and single molecule magnets (SMMs) are described. Gold nanoparticles are functionalized via ligand exchange using a tetrairon(III) SMM containing two 1,2‐dithiolane end groups. The grafting is evidenced by the shift of the plasmon resonance peak recorded with a UV–vis spectrometer, by the suppression of nuclear magnetic resonance signals, by X‐ray photoemission spectroscopy peaks, and by transmission electron microscopy images. The latter evidence the formation of aggregates of nanoparticles as a consequence of the cross‐linking ability of Fe4 through the two 1,2‐dithiolane rings located on opposite sides of the metal core. The presence of intact Fe4 molecules is directly proven by synchrotron‐based X‐ray absorption spectroscopy and X‐ray magnetic circular dichroism spectroscopy, while a detailed magnetic characterization, obtained using electron paramagnetic resonance and alternating‐current susceptibility, confirms the persistence of SMM behavior in this new hybrid nanostructure.  相似文献   
3.
International Journal on Document Analysis and Recognition (IJDAR) - Handwritten Text Recognition (HTR) in free-layout pages is a challenging image understanding task that can provide a relevant...  相似文献   
4.
5.
6.
A tetrairon(III) single‐molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time‐of‐flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High‐frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising‐type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single‐molecule magnet behavior.  相似文献   
7.
We present an implementation of strategies to deposit single-molecule magnets (SMMs) using microcontact printing microCP). We describe different approaches of microCP to print stripes of a sulfur-functionalized dodecamanganese (III, IV) cluster on gold surfaces. Comparison by atomic force microscopy profile analysis of the patterned structures confirms the formation of a chemically stable single layer of SMMs. Images based on chemical contrast, obtained by time-of-flight secondary ion mass spectrometry, confirm the patterned structure.  相似文献   
8.
At the cutting-edge of microwave detection technology, novel approaches which exploit the interaction between microwaves and quantum devices are rising. In this study, microwaves are efficiently detected exploiting the unique transport features of InAs/InP nanowire double quantum dot-based devices, suitably configured to allow the precise and calibration-free measurement of the local field. Prototypical nanoscale detectors are operated both at zero and finite source-drain bias, addressing and rationalizing the microwave impact on the charge stability diagram. The detector performance is addressed by measuring its responsivity, quantum efficiency and noise equivalent power that, upon impedance matching optimization, are estimated to reach values up to ≈2000 A W−1, 0.04 and ≈ 10 16 W / H z ${10^{ - 16}}{\rm{W}}/\sqrt {Hz} $ , respectively. The interaction mechanism between the microwave field and the quantum confined energy levels of the double quantum dots is unveiled and it is shown that these semiconductor nanostructures allow the direct assessment of the local intensity of the microwave field without the need for any calibration tool. Thus, the reported nanoscale devices based on III-V nanowire heterostructures represent a novel class of calibration-free and highly sensitive probes of microwave radiation, with nanometer-scale spatial resolution, that may foster the development of novel high-performance microwave circuitries.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号