首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
一般工业技术   1篇
自动化技术   1篇
  2021年   1篇
  2012年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Neural Computing and Applications - Suspension bridges are critical components of transport infrastructure around the world. Therefore, their operating conditions should be effectively monitored to...  相似文献   
2.
Variability of tow orientation is unavoidable for biaxial engineering fabrics and their composites. Since the mechanical behaviour of these materials is strongly dependent on the fibre direction, variability should be considered and modelled as exactly as possible for more realistic estimation of their forming and infusion behaviour and their final composite mechanical properties. In this study, a numerical code, ‘VariFab’, has been written to model realistic full-field variability of the tow directions across flat sheets of biaxial engineering fabrics and woven textile composites. The algorithm is based on pin-jointed net kinematics and can produce a mesh of arbitrary perimeter shape, suitable for subsequent computational analysis such as finite element forming simulations. While the shear angle in each element is varied, the side-length of all unit cells within the mesh is constant. This simplification ensures that spurious tensile stresses are not generated during deformation of the mesh during forming simulations. Variability is controlled using six parameters that can take on arbitrary values within certain ranges, allowing flexibility in mesh generation. The distribution of tow angles within a pre-consolidated glass–polypropylene composite and self-reinforced polypropylene and glass fabrics has been characterised over various length scales. Reproduction of the same statistical variability of tow orientation as in these experiments is successfully achieved by combining the VariFab code with a simple genetic algorithm.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号