首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
机械仪表   1篇
能源动力   1篇
石油天然气   1篇
一般工业技术   2篇
自动化技术   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2013年   1篇
  2006年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The surging interest in high performance, low‐cost, and safe energy storage devices has spurred tremendous research efforts in the development of advanced electrode active materials. Herein, the in situ growth of zinc–iron layered double hydroxide (Zn–Fe LDH) on graphene aerogel (GA) substrates through a facile, one‐pot hydrothermal method is reported. The strong interaction and efficient electronic coupling between LDH and graphene substantially improve interfacial charge transport properties of the resulting nanocomposite and provide more available redox active sites for faradaic reactions. An LDH–GA||Ni(OH)2 device is also fabricated that results in greatly enhanced specific capacity (187 mAh g?1 at 0.1 A g?1), outstanding specific energy (147 Wh kg?1), excellent specific power (16.7 kW kg?1), along with 88% capacity retention after >10 000 cycles. This approach is further extended to Ni–MH and Ni–Cd batteries to demonstrate the feasibility of compositing with graphene for boosting the energy storage performance of other well‐known Ni‐based batteries. In contrast to conventional Ni‐based batteries, the nearly flat voltage plateau followed by a sloping potential profile of the integrated supercapacitor–battery enables it to be discharged down to 0 V without being damaged. These findings provide new prospects for the design of high‐performance and affordable superbatteries based on earth‐abundant elements.  相似文献   
2.
The electrooxidation of methanol and ethanol was investigated in acidic media on the platinum–nickel nanoparticles carbon-ceramic modified electrode (Pt–Ni/CCE) via cyclic voltammetric analysis in the mixed 0.5 M methanol (or 0.15 M ethanol) and 0.1 M H2SO4 solutions. The Pt–Ni/CCE catalyst, which has excellent electrocatalytic activity for methanol and ethanol oxidation than the Pt–Ni particles glassy carbon modified electrode (Pt–Ni/GCE), Pt nanoparticles carbon-ceramic modified electrode (Pt/CCE) and smooth Pt electrode, shows great potential as less expensive electrocatalyst for these fuels oxidation. These results showed that the presence of Ni in the structure of catalyst and application of CCE as a substrate greatly enhance the electrocatalytic activity of Pt towards the oxidation of methanol and ethanol. Moreover, the presence of Ni contributes to reduce the amount of Pt in the anodic material of direct methanol or ethanol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. On the other hand, the Pt–Ni/CCE catalyst has satisfactory stability and reproducibility for electrooxidation of methanol and ethanol when stored in ambient conditions or continues cycling making it more attractive for fuel cell applications.  相似文献   
3.
Recently nanomaterials have attracted interest for increasing efficiency of polymerase chain reaction (PCR) systems. Here, the authors report on the usefulness of green graphene oxide/gold (GO/Au) nanocomposites for enhancement of PCR reactions. In this study, green GO/Au nanocomposite was prepared with Matricaria chamomilla extract as reducing/capping agent for site‐directed nucleation of Auo atoms on surface of GO sheets. The as‐prepared green GO/Au nanocomposites were then characterised with UV–VIS spectrophotometer and scanning electron microscopy. Later, the effect of these nanocomposites was studied on end‐point and real‐time PCR employed for amplification of human glyceraldehyde‐3‐phosphate dehydrogenase gene. The results indicated that GO/Au nanocomposite can improve both end‐point and real‐time PCR methods at the optimum concentrations, possibly through interaction between GO/Au nanocomposite and the materials in PCR reaction, and through providing increased thermal convection by the GO surface as well as the Au nanostructures. In conclusion, it can be suggested that green GO/Au nanocomposite is a biocompatible and eco‐friendly candidate as enhancer of in‐vitro molecular amplification strategies.Inspec keywords: graphene, molecular biophysics, nucleation, enzymes, gold, nanofabrication, nanocomposites, scanning electron microscopy, nanoparticles, DNA, nanomedicine, ultraviolet spectra, visible spectra, graphene compoundsOther keywords: green GO/Au nanocomposite, polymerase chain reaction systems, green graphene oxide/gold, PCR reaction, as‐prepared green GO/Au nanocomposites, real‐time PCR methods, Au nanostructures, in‐vitro amplification, human DNA, Matricaria chamomilla extract, site‐directed nucleation, Au, CO, CO‐Au  相似文献   
4.
Experimental investigation of oil recovery during water imbibition   总被引:1,自引:0,他引:1  
Capillary imbibition and gravity are the main forces acting in fractured reservoirs. The cores used in the laboratory are usually short while experimental investigation of the gravity forces requires long samples. Therefore an experimental study has been carried out on a long core with the length of 116 cm surrounded with a simulated fracture. Kerosene and a synthetic oil with a density very close to brine have been chosen in order to distinguish the capillary and gravity effects during the water oil displacement. After doing many carefully conducted tests at different rates, it is clear that the process is significantly influenced by gravity. The second part of the study involved experiments on the long core surrounded with a simulated fracture where the flow processes are dominated by either co-current or counter-current imbibition. We changed the recovery mechanism from co-current to counter-current by changing the boundary conditions from an advancing fracture water level to an immersion-type mechanism. Our co-current and counter-current experiments on a tall block showed that counter-current imbibition has lower recovery than co-current imbibition. A wettability study was done after cutting the core into many pieces and aging the pieces in crude oil. Different wettability states were obtained by applying different aging times. The cores with different wettability index were subjected to immersion-type experiment. The results showed that more water wet conditions gave higher oil recovery.  相似文献   
5.

In this paper, the effect of heat treatment and number of passes on microstructure and mechanical properties of friction stir processed AZ91C magnesium alloy samples were investigated. From six samples of as-cast AZ91C magnesium alloy, three plates were pre-heated at temperature of 375°C for 3 hours, and then were treated at temperature of 415°C for 18 hours and finally were cooled down in air. Three plates were relinquished without heat treatment. 8 mm thick as-cast AZ91C magnesium alloy plates were friction stir processed at constant traverse speed of 40 mm/min and tool rotation speed of 1250 rpm. After process, microstructural characterization of samples was analyzed using optical microscopy and tensile and Vickers hardness tests were performed. It was found that heat treated samples had finer grains, higher hardness, improved tensile strength and elongation relative to non-heat treated ones. As the number of passes increased, higher UTS and TE were achieved due to finer grains and more dissolution of β phase (Mg17Al12). The micro-hardness characteristics and tensile improvement of the friction stir processed samples depend significantly on grain size, removal of voids and porosities and dissolution of β phase in the stir zone.

  相似文献   
6.
Neural Computing and Applications - Natural or man-made disasters impose destructive effects like human injuries and urban infrastructure damages, which lead to disruptions that affect the entire...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号