首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54188篇
  免费   5208篇
  国内免费   2807篇
电工技术   3387篇
技术理论   5篇
综合类   4370篇
化学工业   9089篇
金属工艺   3012篇
机械仪表   3466篇
建筑科学   4150篇
矿业工程   1879篇
能源动力   1570篇
轻工业   3885篇
水利工程   1016篇
石油天然气   2532篇
武器工业   389篇
无线电   6222篇
一般工业技术   6670篇
冶金工业   2563篇
原子能技术   759篇
自动化技术   7239篇
  2024年   183篇
  2023年   849篇
  2022年   1408篇
  2021年   2038篇
  2020年   1587篇
  2019年   1473篇
  2018年   1558篇
  2017年   1666篇
  2016年   1547篇
  2015年   2150篇
  2014年   2656篇
  2013年   3277篇
  2012年   3460篇
  2011年   3470篇
  2010年   3247篇
  2009年   3138篇
  2008年   3013篇
  2007年   2845篇
  2006年   2908篇
  2005年   2477篇
  2004年   1902篇
  2003年   2113篇
  2002年   2664篇
  2001年   2338篇
  2000年   1593篇
  1999年   1415篇
  1998年   947篇
  1997年   816篇
  1996年   725篇
  1995年   633篇
  1994年   526篇
  1993年   337篇
  1992年   291篇
  1991年   232篇
  1990年   163篇
  1989年   142篇
  1988年   111篇
  1987年   65篇
  1986年   47篇
  1985年   36篇
  1984年   19篇
  1983年   9篇
  1982年   24篇
  1981年   15篇
  1980年   32篇
  1979年   11篇
  1978年   5篇
  1977年   7篇
  1976年   7篇
  1959年   6篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
1.
Composites based on hafnium carbide and reinforced with continuous naked carbon fiber with and without PyC interface were prepared at low temperature by precursor infiltration and pyrolysis and chemical vapor deposition method. The microstructure, mechanical property, cyclic ablation and fiber bundle push-in tests of the composites were investigated. The results show that after three times ablation cycles, the bending strength of samples without PyC interface decreased by 63.6 %; the bending strength of samples with PyC interface only decreased by 37.8 %. The force displacement curve of the samples with PyC interface presented a well pseudoplastic deformation state. The mechanical behavior difference of two kinds of composites was due to crucial function of PyC interface phase including protection of fiber and weakening of fiber/matrix interface.  相似文献   
2.
Given the continuing issues of environment and energy, methane dry reforming for syngas production have sparked interest among researchers, but struggled with the process immaturity owing to catalyst deactivation. This review summarizes the recent advances in the development of efficient and stable catalysts with strong resistance to coking and metal sintering, including the application of novel materials, the assessment of advanced characterizations and the compatibility to improved reaction system. One feasible option is the crystalline oxide catalysts (perovskite, pyrochlore, spinel and LDHs), which feature a fine metal dispersion and surface confinement effect via a metal exsolution strategy and exhibit superior reactivity and stability. Some new materials (h-BN, clays and MOFs) also extend the option because of their unique morphology and microstructure. It also is elaborated that progresses were achieved in advanced characterizations application, leading to success in the establishment of reaction mechanisms and attributions to the formed robust catalysts. In addition, the perspective described the upgrade of reaction system to a higher reaction efficiency and milder reaction conditions. The combination of efficient reaction systems and robust catalysts paves a way for a scaling-up application of the process.  相似文献   
3.
Narrow linewidth light source is a prerequisite for high-performance coherent optical communication and sensing.Waveguide-based external cavity narrow linewidth semiconductor lasers(WEC-NLSLs)have become a competitive and attractive candidate for many coherent applications due to their small size,volume,low energy consumption,low cost and the ability to integrate with other optical components.In this paper,we present an overview of WEC-NLSLs from their required technologies to the state-of-the-art progress.Moreover,we highlight the common problems occurring to current WEC-NLSLs and show the possible approaches to resolving the issues.Finally,we present the possible development directions for the next phase and hope this review will be beneficial to the advancements of WEC-NLSLs.  相似文献   
4.
5.
The effects of non-thermal plasma (NTP) on the physicochemical properties of wheat flour and the quality of fresh wet noodles ( FWN) were investigated. The results showed that NTP effectively decreased the total plate count (TPC), yeast and mould count (YMC) and Bacillus spp. in wheat flour. Wet gluten contents and the stability time reached the maximum when treated for 20 s. The viscosity of starch increased significantly after treatment due to the increased of damaged starch. The contents of secondary structure were altered to some extent, which was because that the ordered network structure of gluten protein broken. Furthermore, compared with the control, texture properties of FWN were enhanced significantly at 20 s, and the darkening rate of FWN was greatly inhibited due to the low polyphenol oxidase (PPO) activity. Consequently, the most suitable treatment was 500 W for 20 s, providing a basis for the application of NTP in flour products.  相似文献   
6.
For the purpose of developing biodegradable magnesium alloys with suitable properties for biomedical applications, Mg–Zn–Ca–Cu metallic glasses were prepared by copper mold injection methods. In the present work, the effect of Cu doping on mechanical properties, corrosion behavior, and glass-forming ability of Mg66Zn30Ca4 alloy was studied. The experimental findings demonstrated that the incorporation of Cu decreases the corrosion resistance of alloys, but increases the microhardness and degradation rate slightly. However, the addition of a trace amount of Cu can make the samples have antibacterial properties. Therefore, Mg–Zn–Ca–Cu has great advantages in clinical implantation and is the potential implant material.  相似文献   
7.
A self-nanoemulsifying drug delivery system (SNEDDS) was developed to enhance the absorption of heparin after oral administration, in which heparin was compounded with phospholipids to achieve better fat solubility in the form of heparin-phospholipid (HEP-Pc) complex. HEP-Pc complex was prepared using the solvent evaporation method, which increased the solubility of heparin in n-octanol. The successful preparation of HEP-Pc complex was confirmed by differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, NMR, and SEM. A heparin lipid microemulsion (HEP-LM) was prepared by high-pressure homogenization and characterized. HEP-LM can enhance the absorption of heparin after oral administration, significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT) in mice, and reduce fibrinogen (FIB) content. All these outcomes indicate that HEP-LM has great potential as an oral heparin formulation.  相似文献   
8.
We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe the oral organelle, cytopharynx, and subpellicular structure of a Dileptus sp. The main results were as follows: (a) the cytostome was located on the ventral surface of the base of the beak, surrounded by a periportal matrix that integrated 135 microtube bundles. When these microtube bundles contract, radially arranged into a disk, the cytostome was closed. When these microtube bundles were stretch, they fell into the cytostome and opens. The diameter of the cytostome was about 16 μm regardless of its closure or opening, indicating that the contraction or elongation of these microtube bundles did not change the size of the cytostome, which was only related to whether it blocked the cytostome, thus determining the opening and closing of the cytostome. There were many microtube bundles on two sides of the feeding trough, which could widen or narrow the feeding trough and facilitate beak feeding. (b) The cytopharynx was basket‐like without a bottom with a diameter of about 6 μm and was woven from two kind fibers about 0.08 and 0.19 μm. (c) There were two types of extrusomes under the pellicle. Using transmission electron microscopy,the Type I extrusomes showed narrow and long egg shape, its cross section was circular which is composed by various electronic density of concentric. Using the scanning electron microscope, they were two slightly thin clavate, the length was about 5 μm, the diameter of the middle section was about 0.75 μm, and the diameter of the two ends was about 0.32 μm, they were distributed abundantly between the microtubule fasciculi which were located on both sides of the gap on the feeding groove. Using transmission electron microscopy, the Type II extrusomes showed egg shape. Using the scanning electron microscopy, they were about 1.6 × 0.8 μm in size, they were distributed abundantly under the body pellicle while rarely the proboscis. In addition, many different of developmental stages two types of extrusomes could be also seen in the cytoplasm. (d) There were very well‐developed fibrous systems under the pellicle that were woven from fibers about 0.14 μm in diameter that attached to the pellicle and bound some organelles in the cytoplasm (e.g., mitochondria, extrusomes) and other structures to the cytoplasm and maintained cell morphology. The results of this study not only supplement and enrich the morphological contents of the Dileptus sp., but also provide the basis for the study of the taxonomy of the Dileptus sp. It also provides a new method for researchers to explore the morphology and structure of ciliate cells under the cortex by SEM.  相似文献   
9.
Despite recent rapid advances in metal halide perovskites for use in optoelectronics, the fundamental understanding of the electrical-poling-induced ion migration, accounting for many unusual attributes and thus performance in perovskite-based devices, remain comparatively elusive. Herein, the electrical-poling-promoted polarization potential is reported for rendering hybrid organic–inorganic perovskite photodetectors with high photocurrent and fast response time, displaying a tenfold enhancement in the photocurrent and a twofold decrease in the response time after an external electric field poling. First, a robust meniscus-assisted solution-printing strategy is employed to facilitate the oriented perovskite crystals over a large area. Subsequently, the electrical poling invokes the ion migration within perovskite crystals, thus inducing a polarization potential, as substantiated by the surface potential change assessed by Kelvin probe force microscopy. Such electrical-poling-induced polarization potential is responsible for the markedly enhanced photocurrent and largely shortened response time. This work presents new insights into the electrical-poling-triggered ion migration and, in turn, polarization potential as well as into the implication of the latter for optoelectronic devices with greater performance. As such, the utilization of ion-migration-produced polarization potential may represent an important endeavor toward a wide range of high-performance perovskite-based photodetectors, solar cells, transistors, scintillators, etc.  相似文献   
10.
The crystallization of capped ultrathin polymer films is closely dependent on film thickness and interfacial interaction. Using dynamic Monte Carlo simulations, the crystallization behaviors of polymer films confined between two substrates were investigated. The crystallization rate of confined polymers is reduced with high interfacial interactions. Above a critical strength of interfacial interaction, polymer crystallization in the thin film is inhibited within the simulation time scales. An increase in film thickness leads to a rise in critical interfacial interaction. In thicker films, the chains have more space to change conformation to form crystal stems. In addition, there are fewer absorbed segments in confined chains for the thicker films, and thus the chains have stronger ability to adjust their conformation. Therefore an increase in film thickness can cause a reduction in the entropic barrier required for the formation of crystals and thus an increase in the critical interfacial interaction. © 2018 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号