首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97372篇
  免费   2082篇
  国内免费   784篇
电工技术   1407篇
综合类   2810篇
化学工业   14163篇
金属工艺   5403篇
机械仪表   3655篇
建筑科学   3033篇
矿业工程   825篇
能源动力   1647篇
轻工业   5205篇
水利工程   1477篇
石油天然气   768篇
武器工业   44篇
无线电   10466篇
一般工业技术   18639篇
冶金工业   3144篇
原子能技术   406篇
自动化技术   27146篇
  2024年   50篇
  2023年   181篇
  2022年   290篇
  2021年   505篇
  2020年   415篇
  2019年   392篇
  2018年   14870篇
  2017年   13791篇
  2016年   10404篇
  2015年   1134篇
  2014年   937篇
  2013年   1359篇
  2012年   4034篇
  2011年   10366篇
  2010年   9156篇
  2009年   6304篇
  2008年   7466篇
  2007年   8441篇
  2006年   709篇
  2005年   1656篇
  2004年   1468篇
  2003年   1473篇
  2002年   820篇
  2001年   322篇
  2000年   436篇
  1999年   321篇
  1998年   286篇
  1997年   219篇
  1996年   224篇
  1995年   159篇
  1994年   145篇
  1993年   141篇
  1992年   114篇
  1991年   103篇
  1990年   62篇
  1989年   69篇
  1988年   58篇
  1985年   61篇
  1984年   62篇
  1983年   52篇
  1982年   48篇
  1981年   71篇
  1980年   57篇
  1979年   47篇
  1978年   46篇
  1976年   46篇
  1968年   54篇
  1965年   48篇
  1955年   65篇
  1954年   70篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
3.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
4.
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.  相似文献   
5.
Deshmukh  P.  Sar  S. K.  Smječanin  N.  Nuhanović  M.  Lalwani  R. 《Radiochemistry》2022,64(4):532-542
Radiochemistry - Magnetically modified waste bark of the Aegle marmelos tree was prepared by using green synthesis method and was used in a batch system for U(VI) removal from aqueous solution. The...  相似文献   
6.
Hydrophilic polymer networks (hydrogels) based on sodium carboxymethylcellulose (NaCMC) and polycarboxylic acids (oxalic, succinic, citric and adipic) as cross-linking agents are synthesized by esterification reaction; one series of NaCMC hydrogels cross-linked with citric acid is prepared with acrylamide and acrylic acid (Aam/Aac) copolymers using the design of semi-interpenetrating polymer networks (semi-IPN), in order to increase their potential application for flocculation purposes. The Infrared spectroscopy (FTIR) of hydrogels confirms the esterification reaction between NaCMC and cross-linking agents. Results of swelling measurements show that citric acid in the amount of 15 wt% gives the hydrogels with the best absorption capacity. The results of Differential scanning calorimetry (DSC) and Thermal gravimetric analysis (TGA) show no significant difference in thermal properties of neat and semi-interpenetrating NaCMC hydrogels. The amorphous nature of hydrogels is confirmed by X-ray diffraction analysis (XRD). The results of flocculation study show that combination of NaCMC network and Aam/Aac copolymer with initial mass ratio of 10/90 creates a theoretical platform for the production of flocculant which could show high efficacy in purifying of water dominated by positively charged particles.  相似文献   
7.
8.
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.  相似文献   
9.
10.
Ti3C2Tx (MXene), a new kind of 2D ceramic nanosheets, is receiving more and more attention in the fields of medicine, biology, energy, electronics, etc. However, the preparation and application of MXene in hydrogel is still in its infancy period. Here, we review the latest progress (after 2018) related to MXene hydrogels in time. Aiming at the key issue of the dispersion stability of MXene in hydrogel systems, the preparation strategy, mechanism, advantages and disadvantages of MXene hydrogels are sorted out in detail, and the potential application prospects of MXene composite hydrogel are introduced. Finally, future viewpoints are put forward for the dispersion stability challenges that need solving in the design of MXene hydrogel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号