首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
化学工业   5篇
能源动力   5篇
无线电   4篇
一般工业技术   10篇
冶金工业   10篇
自动化技术   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2013年   1篇
  2012年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1987年   2篇
  1986年   2篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
Polymers have been studied extensively because of their wonderful array of properties. Their properties can be tailored by many means and can be made useful in many ways. Polymers can be crosslinked or branched and can provide different properties, such as conduction and passivation. This study dealt with the RF sputter deposition of poly(tetrafluoroethylene) (PTFE) films with the aim of using them as masking materials during the fabrication of various micromachined structures. The films were deposited on silicon substrates at different plasma powers (100, 150, and 200 W) for a constant deposition time (60 min). To test the masking properties, the deposited films were immersed in a 20 wt % aqueous KOH solution at 80°C for 60 min. The films showed lower contact angles and interfacial tension, and this indicated good adhesion of the films to the silicon substrates. Good adhesion is an essential quality of masking materials during micromachining. The structural properties of the as‐deposited and etched films were studied with Fourier transform infrared and X‐ray photoelectron spectroscopy. These indicated that the bonding groups and binding energies of C? F and C? CF matched the reported values well. Furthermore, the presence of C? F and C? CF bonds, even after the etching of silicon substrates in highly alkaline KOH solutions for 60 min, showed that the PTFE films remained unchanged in the etchant and, therefore, could function as good masking materials during the fabrication of micromachined structures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1183–1192, 2004  相似文献   
2.
Nanofluids comprised of silicon dioxide (SiO2) nanoparticles suspended in a 60:40 (% by weight) ethylene glycol and water (EG/water) mixture were investigated for their heat transfer and fluid dynamic performance. First, the rheological properties of different volume percents of SiO2 nanofluids were investigated at varying temperatures. The effect of particle diameter (20 nm, 50 nm, 100 nm) on the viscosity of the fluid was investigated. Subsequent experiments were performed to investigate the convective heat transfer enhancement of nanofluids in the turbulent regime by using the viscosity values measured. The experimental system was first tested with EG/water mixture to establish agreement with the Dittus-Boelter equation for Nusselt number and with Blasius equation for friction factor. The increase in heat transfer coefficient due to nanofluids for various volume concentrations has been presented. Pressure loss was observed to increase with nanoparticle volume concentration. It was observed that an increase in particle diameter increased the heat transfer coefficient. Typical percentage increases of heat transfer coefficient and pressure loss at fixed Reynolds number are presented.  相似文献   
3.
This paper presents a model for building context-based systems in pervasive computing environments from high level specifications. A pervasive computing environment is viewed as a collaboration space consisting of mobile users, system services, and sensors and resources embedded in the physical environment. The approach presented here is developed for building collaborative activities in which users and environment services cooperate towards some shared objectives and tasks. The specification model allows expression of policies related to context-based discovery and secure access of resources, and role-based interactions among users and environmental services. Using several examples we illustrate the capabilities of our specification model for expressing various kinds of context-based requirements for resource access and user interactions.  相似文献   
4.
In cats and monkeys, we examined the parasympathetic component of the oculomotor complex, which directly innervates the ciliary muscle, using horseradish peroxidase (HRP). Labeled neurons of varying form and size were found in the Edinger-Westphal(EW) and the Perlia nuclei of the cat and in the anteromedian, EW, and Perlia nuclei of the monkey. Our study confirmed that a direct parasympathetic pathway exists from the midbrain to the ciliary muscles, and that accommodation is controlled in part by this direct link from the midsagittal region via a parasympathetic neuron of the oculomotor nuclear complex.  相似文献   
5.
6.
A study was conducted to ascertain the effect of variation in spin speed and baking temperature on \(\upbeta \)-phase content in the spin-coated poly(vinylidene fluoride) (PVDF) thick films (\({\sim }4{-}25\,\upmu \hbox {m}\)). Development of \(\upbeta \)-phase is dependent on film stretching and crystallization temperature. Therefore, to study the development of \(\upbeta \)-phase in films, stretching is achieved by spinning and crystallization temperature is adjusted by means of baking. PVDF films are characterized using Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. It is observed that crystallization temperature lower than \(60^{\circ }\hbox {C}\) and increase in spin speed increases the \(\upbeta \)-phase content in PVDF films. Crystallization temperature above \(60^{\circ }\hbox {C}\) reduces \(\upbeta \)-phase content and increases \(\upalpha \)-phase content. It was also observed that viscosity of the PVDF solution affects the \(\upbeta \)-phase development in films at a particular spin speed.  相似文献   
7.
A nanofluid is the dispersion of metallic solid particles of nanometer size in a base fluid such as water or ethylene glycol. The presence of these nanoparticles affects the physical properties of a nanofluid via various factors including shear stress, particle loading, and temperature. In this paper the rheological behavior of copper oxide (CuO) nanoparticles of 29 nm average diameter dispersed in deionized (DI) water is investigated over a range of volumetric solids concentrations of 5 to 15% and various temperatures varying from 278-323 degrees K. These experiments showed that these nanofluids exhibited time-independent pseudoplastic and shear-thinning behavior. The suspension viscosities of nanofluids decrease exponentially with respect to the shear rate. Suspension viscosity follows the correlation in the form ln(mus) = A(1/T)-B, where constants A and B are the functions of volumetric concentrations. The calculated viscosities from the developed correlations and experimental values were found to be within +/- 10% of their values.  相似文献   
8.
Ceramic technology has had an important role in microelectronics since 1960s and ceramic seems to be a continuously developing, mature technology. Recently, development of low temperature co-fired ceramic technology (LTCC) has been geared up due to the huge demand of miniaturisation of electronic components. New materials are being developed for extending the demand of wide range of dielectric properties of LTCC, minimization of shrinkage, cambering of LTCC, high quality of conductors and patterning etc. This paper deals with formulation of silver conductor inks for LTCC and the effect of ink organics on the LTCC in particular to cambering/warpage, microstructure development were studied and presented.
Sunit RaneEmail:
  相似文献   
9.
10.
This paper presents nanofluid convective heat transfer and viscosity measurements, and evaluates how they perform heating buildings in cold regions. Nanofluids contain suspended metallic nanoparticles, which increases the thermal conductivity of the base fluid by a substantial amount. The heat transfer coefficient of nanofluids increases with volume concentration. To determine how nanofluid heat transfer characteristics enhance as volume concentration is increased; experiments were performed on copper oxide, aluminum oxide and silicon dioxide nanofluids, each in an ethylene glycol and water mixture. Calculations were performed for conventional finned-tube heat exchangers used in buildings in cold regions. The analysis shows that using nanofluids in heat exchangers could reduce volumetric and mass flow rates, and result in an overall pumping power savings. Nanofluids necessitate smaller heating systems, which are capable of delivering the same amount of thermal energy as larger heating systems using base fluids, but are less expensive; this lowers the initial equipment cost excluding nanofluid cost. This will also reduce environmental pollutants because smaller heating units use less power, and the heat transfer unit has less liquid and material waste to discard at the end of its life cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号