首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   1篇
电工技术   1篇
化学工业   5篇
建筑科学   1篇
能源动力   2篇
石油天然气   4篇
无线电   17篇
一般工业技术   7篇
冶金工业   8篇
自动化技术   25篇
  2023年   1篇
  2020年   4篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1991年   1篇
  1984年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
1.
The α   scale spaces is a recent theory that open new possibilities of phase-based image processing. It is a parameterised class (α∈]0,1])(α]0,1]) of linear scale space representations, which allows a continuous connection beyond the well-known Gaussian scale space (α=1α=1). In this paper, we make use of this unified representation to derive new families of band pass quadrature filters, built from derivatives and difference of the α scale space generating kernels. This construction leads to generalised α kernel filters including the commonly known families derived from the Gaussian and the Poisson kernels. The properties of each family are first studied and then experiments on one- and two-dimensional signals are shown to exemplify how the suggested filters can be used for edge detection. This work is complemented by an experimental evaluation, which demonstrates that the new proposed filters are a good alternative to the commonly used Log-Gabor filter.  相似文献   
2.
The capacity of microfluidic technology to fabricate monodisperse emulsion droplets is well established. Parallelisation of droplet production is a prerequisite for using such an approach for making high-quality materials for either fundamental or industrial applications where product quantity matters. Here, we investigate the emulsification efficiency of parallelised drop generators based on a flow-focusing geometry when incorporating the role of partial wetting in order to make emulsion droplets with a diameter below 10 μm. Confinement intrinsically encountered in microsystems intensifies the role played by interfaces between liquids and solids. We thus take advantage of partial wetting to enhance the maximum confinement accessible due to liquid flow focusing. We compare the performances brought by partial wetting to more established routes such as step emulsification. We show that the step configuration and the partial wetting regime are both well suited for being parallelised and thus open the way to the production of fine and calibrated emulsions for further applications. Finally, this new route of emulsification that exploits partial wetting between the fluids and the channel walls opens possibilities to the formation of substantially smaller droplets, as required in many fields of application.  相似文献   
3.
In data analysis tasks, we are often confronted to very high dimensional data. Based on the purpose of a data analysis study, feature selection will find and select the relevant subset of features from the original features. Many feature selection algorithms have been proposed in classical data analysis, but very few in symbolic data analysis (SDA) which is an extension of the classical data analysis, since it uses rich objects instead to simple matrices. A symbolic object, compared to the data used in classical data analysis can describe not only individuals, but also most of the time a cluster of individuals. In this paper we present an unsupervised feature selection algorithm on probabilistic symbolic objects (PSOs), with the purpose of discrimination. A PSO is a symbolic object that describes a cluster of individuals by modal variables using relative frequency distribution associated with each value. This paper presents new dissimilarity measures between PSOs, which are used as feature selection criteria, and explains how to reduce the complexity of the algorithm by using the discrimination matrix.  相似文献   
4.
The encapsulation of phase change materials (PCMs) as thermal energy storage materials is a big issue. PCM is usually encapsulated to avoid spillage, flammability and its reaction with the surrounding environment to improve its application. In the last decade, various methods have been employed and all kinds of microencapsulated PCM are produced. In this paper, we present a facile route to produce an encapsulated PCM with an organic and inorganic shell. The encapsulated phase change material (PCM) was prepared using a coaxial micro-fluidic system combined with an ionic cross-linking process. The alginate was used as the basic shell and a range of capsules was obtained by modifying the original shell using two inorganic components such as sodium carbonate and sodium silicate. Various samples, each with a different surrounding layer, were prepared by combining alginate calcium (Alg–Ca) as an organic shell with an inorganic component such as alginate calcium carbonate (Alg–CaCO3) and alginate calcium silicate (Alg–CaSiO3). In these experimental works, we have investigated the compatibility and the stability of capsules modified with the inorganic component. The scanning electron microscopy (SEM) technique and optical microscopy were utilized to study the capsule morphology. The chemical composition of the shell was evaluated by Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetry analysis and SEM coupled with the EDX analysis, and the capsule stability was estimated under an accelerated thermal cycling.  相似文献   
5.
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号