首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   8篇
化学工业   23篇
金属工艺   4篇
机械仪表   1篇
能源动力   2篇
轻工业   1篇
无线电   11篇
一般工业技术   9篇
冶金工业   19篇
自动化技术   11篇
  2023年   2篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2007年   11篇
  2006年   1篇
  2005年   1篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1986年   1篇
  1975年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
Crack–opening displacement (COD) measurements were performed on a commercial lead zirconate titanate (PZT). The intrinsic fracture toughness (or crack–tip toughness) of this material was determined using a new evaluation procedure, which takes into account the near–tip CODs and complete crack profile CODs. The crack–tip toughness K I0 was determined from an extrapolation of COD data obtained at various loading stages, thus avoiding the complications caused by subcritical crack growth in PZT. Results for plane strain and plane stress condition are presented.  相似文献   
2.
During the solidification of a liquid containing insoluble particles, the particles can be instantaneously engulfed, or continuously pushed, or pushed and subsequently engulfed. A critical velocity for the pushing-engulfment transition is observed experimentally. Most models proposed to date ignore the complications arising from the liquid convection ahead of the solid-liquid interface. They simply solve the balance between the attractive drag force exercised by the liquid on the particle and the repulsive interfacial force. This work is an effort to calculate analytically the lift forces (Saffman and Magnus forces) under certain assumptions regarding the nature of fluid flow ahead of the solid/liquid interface. This makes possible the quantitative evaluation of the three experimentally observed regimes occurring during particle-interface interaction: (1) at low convection—no effect on the critical velocity for the particle engulfment transition; (2) at intermediate convection—increased critical velocity; (3) at high convection—no particle-interface interaction. The model was applied to evaluate the gravity level required for microgravity experimental work on particle pushing where the effect of liquid convection during solidification is negligible. This is necessary to validate existing theoretical models that do not take into account fluid flow parallel to the solidification interface.  相似文献   
3.
This work describes the measurement of R -curve behavior in ferroelectric ceramics using four-point bend specimens with controlled semielliptical surface cracks. The results are compared for two compositions of lead lanthanum zirconate titanate. One exhibits ferroelastic behavior, the other electrostrictive linear elastic behavior. R -curves are measured in the crack length regime of 0.1 to 0.8 mm. The ferroelastic composition displays a toughness increase from 0.5 to 1.2 MPa·m1/2. The linear elastic composition displays a flat R -curve. The R -curve behavior is attributed to ferroelastic toughening.  相似文献   
4.
Dense nanocrystalline barium strontium titanate Ba0.6Sr0.4TiO3 (BST) ceramics with an average grain size around 40 nm and very small dispersion were obtained by spark plasma sintering at 950°C and 1050°C starting from nonagglomerated nanopowders (~20 nm). The powders were synthesized by a modified “Organosol” process. X‐ray diffraction (XRD) and dielectric measurements in the temperature range 173–313 K were used to investigate the evolution of crystal structure and the ferroelectric to paraelectric phase transformation behavior for the sintered BST ceramics with different grain sizes. The Curie temperature TC decreases, whereas the phase transition becomes diffuse for the particle size decreasing from about 190 to 40 nm with matching XRD and permittivity data. Even the ceramics with an average grain size as small as 40 nm show the transition into the ferroelectric state. The dielectric permittivity ε shows relatively good thermal stability over a wide temperature range. The dielectric losses are smaller than 2%–4% in the frequency range of 100 Hz–1 MHz and temperature interval 160–320 K. A decrease in the dielectric permittivity in nanocrystalline ceramics was observed compared to submicrometer‐sized ceramics.  相似文献   
5.
The paper presents a new lossless ECG compression scheme. The short-term predictor and the coder use conditioning on a small number of contexts. The long-term prediction is based on an algorithm for R-R interval estimation. Several QRS detection algorithms are investigated to select a low complexity and reliable detection algorithm. The coding of prediction residuals uses primarily the Golomb-Rice (GR) codes, but, to improve the coding results, escape codes GR-ESC are used in some contexts for a limited number of samples. Experimental results indicate the good overall performance of the lossless ECG compression algorithms (reducing the storage needs from 12 to about 3-4 bits per sample). The scheme consistently outperforms other waveform or general purpose coding algorithms.  相似文献   
6.
A model of phase transformations in spheroidal graphite (SG) cast iron has been developed to quantitatively describe the microstructural evolution during solidification and the subsequent solid-state phase transformations (eutectoid reaction) during continuous cooling and to predict some of the microstructural characteristics of final phases formed in SG iron castings. Such characteristics include phase fractions, phase spacings, and grain dimensions. In the model, the nucleation and growth of primary dendrites and eutectics were described based on existing theories, whereas the mathematical formulation for the eutectoid reaction,i.e., the formation of pearlite and ferrite from the as-cast austenite, was developed based on theories as well as physical evidence obtained from the experimental work. The Johnson-Mehl equation and the Avrami equation were used to calculate the fraction of transformed phases under continuous cooling conditions. The role of the grain impingement factor used in these two equations and the significance of the additivity principle in treating nonisothermal transformations were briefly discussed. The latent heat method was used for the numerical treatment of the release of latent heat during phase transformations. A two-dimensional finite element code which can be used in either Cartesian or cylindrical coordinates (ALCAST-2D) was used to solve the time-dependent temperature distribution throughout the metal/mold system. Numerical predictions were validated against experimental results, and good agreement was obtained. DONGKAI SHANGGUAN, Previously Assistant Research Engineer, The University of Alabama,  相似文献   
7.
Directional solidification experiments have been carried out to determine the pushing/engulfment transition for two different metal/particle systems. The systems chosen were aluminum/zirconia particles and zinc/zirconia particles. Pure metals (99.999 pct A1 and 99.95 pct Zn) and spherical particles (500 μm in diameter) were used. The particles were nonreactive with the matrices within the temperature range of interest. The experiments were conducted so as to ensure a planar solid/liquid (SL) interface during solidification. Particle location before and after processing was evaluated by X-ray transmission microscopy (XTM) for the Al/ZrO2 samples. All samples were characterized by optical metallography after processing. A clear methodology for the experiment evaluation was developed to unambiguously interpret the occurrence of the pushing/engulfment transition (PET). It was found that the critical velocity for engulfment ranges from 1.9 to 2.4 μm/s for Al/ZrO2 and from 1.9 to 2.9 μm/s for Zn/ZrO2.  相似文献   
8.
9.
Magneto-electric (ME) materials are of high interest for a variety of advanced applications like in data storage and sensor technology. Due to the low ME coupling in natural materials, composite structures become relevant which generate the effective ME coupling as a strain-mediated product property. In this framework, it seems to be possible to achieve effective ME coefficients that can be exploited technologically. The present contribution investigates the realization of particulate ME composites with a focus on their experimental and computational characterization. We will show that different states of pre-polarizations of the ferroelectric material have a decisive influence on the overall obtainable ME coefficient. Details on the synthesis of two-phase composite microstructures consisting of a barium titanate matrix and cobalt ferrite inclusions will be discussed. Subsequently we will employ computational homogenization in order to determine the effective properties of the experimental composite numerically. We investigate the influence of different states of pre-polarization on the resulting ME-coefficients. For the numerical incorporation of the pre-polarization we use a heuristic method.  相似文献   
10.
2D hybrid perovskites (2DP) are versatile materials, whose electronic and optical properties can be tuned through the nature of the organic cations (even when those are seemingly electronically inert). Here, it is demonstrated that fluorination of the organic ligands yields glassy 2DP materials featuring long‐lived correlated electron–hole pairs. Such states have a marked charge‐transfer character, as revealed by the persistent Stark effect in the form of a second derivative in electroabsorption. Modeling shows that electrostatic effects associated with fluorination, combined with the steric hindrance due to the bulky side groups, drive the formation of spatially dislocated charge pairs with reduced recombination rates. This work enriches and broadens the current knowledge of the photophysics of 2DP, which will hopefully guide synthesis efforts toward novel materials with improved functionalities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号