首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   0篇
电工技术   1篇
综合类   1篇
化学工业   3篇
建筑科学   2篇
能源动力   1篇
水利工程   18篇
石油天然气   4篇
无线电   1篇
一般工业技术   2篇
冶金工业   1篇
自动化技术   19篇
  2020年   1篇
  2019年   3篇
  2018年   9篇
  2017年   4篇
  2016年   3篇
  2014年   10篇
  2013年   5篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2007年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有53条查询结果,搜索用时 31 毫秒
1.
Recently, methods based on artificial intelligence (AI) have been suggested to provide reliable positioning information for different land vehicle navigation applications. The majority of these applications utilise both the global positioning system (GPS) and the inertial navigation system (INS). These AI modules were trained to mimic the latest vehicle dynamics so that, in case of GPS outages, the system relies on INS and the recently updated AI module to provide the vehicle position. Several neural networks and neuro-fuzzy techniques were implemented in real-time in a de-centralised fashion and provided acceptable accuracy for short GPS outages. It was reported that these methods provided poor positioning accuracy during relatively long GPS outages. In order to prevail over this limitation, this study optimises the Al-based INS/GPS integration schemes utilising adaptive neuro-fuzzy inference system with performing, in real-time, both GPS position and velocity updates. In addition, a holdout cross validation method during the update procedure was utilised in order to ensure generalisation of the model. The proposed system is tested using differential GPS and both navigational and tactical grades INS field test data obtained from a land vehicle experiment. The results showed that the effectiveness of the proposed system over both the existing Al-based and the conventional INS/GPS integration techniques, especially during long GPS outages. This method may have one limitation related to the unusual significant changes of the vehicle dynamics between the update and the prediction stages of operation which may influence the overall positioning accuracy.  相似文献   
2.
3.

In reservoir system operation, optimization is very much essential and the compatibility of different optimization techniques is essential to be checked by some performance checking indices. In this study, various types of performance-measuring index are used and compared to provide a complete knowledge on adopting different approaches. Here, the considered performance-measuring indicators will check the operation policy in terms of three different scenarios—how the method is efficient in achieving best results (reliability); how vulnerable the method is for different critical situation (vulnerability); and how capable it is to handle a failure of the model (resiliency). Therefore, the study proposed the artificial bee colony (ABC) optimization technique to develop an optimal water release policy for the well-known Aswan High Dam, Egypt. Particle swarm optimization, genetic algorithm and neural network-based stochastic dynamic programming are also used in a view of comparing model performances. A release curve is developed for every month as a guidance to the decision maker. Simulation has been done for each method using historical actual inflow data, and reliability, resiliency and vulnerability are measured. All model indicators proved that the release policy provided by ABC optimization outperforms in terms of achieving minimum water deficit, less waste of water and handling critical situations.

  相似文献   
4.
Rainfall is one of the most complicated effective hydrologic processes in runoff prediction and water management. The adaptive neuro-fuzzy inference system (ANFIS) has been widely used for modeling different kinds of nonlinear systems including rainfall forecasting. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) combines the capabilities of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) to solve different kinds of problems, especially efficient in rainfall prediction. This paper after reconsidering conventional ANFIS architecture brings up a modified ANFlS (MANFlS) structure developed with attention to making ANFIS technique more efficient regarding to Root Mean Square Error (RMSE), Correlation Coefficient (R 2), Root Mean Absolute Error (RMAE), Signal to Noise Ratio (SNR) and computing epoch. The modified ANFIS (MANFIS) architecture is simpler than conventional ANFIS with nearly the same performance for modeling nonlinear systems. In this study, two scenarios were introduced; in the first scenario, monthly rainfall was used solely as an input in different time delays from the time (t) to the time (t-4) to conventional ANFIS, second scenario used the modified ANFIS to improve the rainfall forecasting efficiency. The result showed that the model based Modified ANFIS performed higher rainfall forecasting accuracy; low errors and lower computational complexity (total number of fitting parameters and convergence epochs) compared with the conventional ANFIS model.  相似文献   
5.
Asphalt emulsion produced from local asphalt 60/70 (Suez Co.) was modified with different types of polymers such as epoxy resin, latex styrene butadiene styrene (SBS), poly vinyl acetate (PVA), and with a mixture of two or more types of above mentioned polymers to produce a modified asphalt emulsion with high performance. This paper describes the method and technique for preparing asphalt emulsion as well as the tests, and evaluates several aspects concerning the prepared emulsion such as performance of evaporation residues, fuel and acid resistance, rheological properties, and durability. The results obtained revealed that all the modified asphalt emulsions gave better performance as compared with unmodified emulsion. Asphalt emulsion modified with a mixture of epoxy resin, latex SBR, and PVA showed the best road performance in terms of fuel and acid resistance. It was observed that the weight loss for unmodified binder, residue after evaporation of water, after immersion in kerosene for 120 min is 90% of its initial weight, while the binder improved with a mixture of SBS latex, epoxy resin, and PVA showed a weight loss of ?16% and 9% of its initial weight. Also, the admixture gives high acid resistance (weight loss ~ 9%) after immersing in 5% HCl. The dynamic viscosity test showed that asphalt emulsion modified with a mixture of SBS latex, epoxy resin, and PVA has the highest viscosity value which is a promising indication about the validity of its use for pavement in different applications.  相似文献   
6.
River flow forecasting is an essential procedure that is necessary for proper reservoir operation. Accurate forecasting results in good control of water availability, refined operation of reservoirs and improved hydropower generation. Therefore, it becomes crucial to develop forecasting models for river inflow. Several approaches have been proposed over the past few years based on stochastic modeling or artificial intelligence (AI) techniques. In this article, an adaptive neuro-fuzzy inference system (ANFIS) model is proposed to forecast the inflow for the Nile River at Aswan High Dam (AHD) on monthly basis. A major advantage of the fuzzy system is its ability to deal with imprecision and vagueness in inflow database. The ANFIS model divides the input space into fuzzy sub-spaces and maps the output using a set of linear functions. A historical database of monthly inflows at AHD recorded over the past 130 years is used to train the ANFIS model and test its performance. The performance of the ANFIS model is compared to a recently developed artificial neural networks (ANN) model. The results show that the ANFIS model was capable of providing higher inflow forecasting accuracy specially at extreme inflow events compared with that of the ANN model. It is concluded that the ANFIS model can be quite beneficial in water management of Lake Nasser reservoir at AHD.  相似文献   
7.

The growing prevalence of droughts and water scarcity have increased the importance of operating dam and reservoir systems efficiently. Several methods based on algorithms have been developed in recent years in a bid to optimize water release operation policy, in order to overcome or minimize the impact of droughts. However, all of these algorithms suffer from some weaknesses or drawbacks – notably early convergence, a low rate of convergence, or trapping in local optimizations – that limit their effectiveness and efficiency in seeking to determine the global optima for the operation of water systems. Against this background, the present study seeks to introduce and test a Hybrid Algorithm (HA) which integrates the Gravitational Search Algorithm (GSA) with the Particle Swarm Optimization Algorithm (PSOA) with the goal of minimizing irrigation deficiencies in a multi-reservoir system. The proposed algorithm was tested for a specific important multi-reservoir system in Iran: namely the Golestan Dam and Voshmgir Dam system. The results showed that applying the HA could reduce average irrigation deficiencies for the Golestan Dam substantially, to only 2 million cubic meters (MCM), compared to deficiency values for the Genetic Algorithm (GA), PSOA and GSA of 15.1, 6.7 and 5.8 MCM respectively. In addition, the HA performed very efficiently, reducing substantially the computational time needed to achieve the global optimal when compared with the other algorithms tested. Furthermore, the HA showed itself capable of assuring a high volumetric reliability index (VRI) to meet the pattern of water demand downstream from the dams, as well as clearly outperforming the other algorithms on other important indices. In conclusion, the proposed HA seems to offer considerable potential as an optimizer for dam and reservoir operations world-wide.

  相似文献   
8.

In order to have a proper design and analysis for the column of stone in the soft clay soil, it is essential to develop an accurate prediction model for the settlement behavior of the stone column. In the current research, to predict the behavior in the settlement of stone column a support vector machine (SVM) method is developed and examined. In addition, the proposed model has been compared with the existing reference settlement prediction model that using the monitored field data. As SVM mathematical procedure has resilient and robust generalization aptitude and ensures searching for global minima for particular training data as well. Therefore, the potential that support vector regression might perform efficiently to predict the ground soft clay settlement is relatively valuable. As a result, in this study, comparison of two different developed types of SVM method is carried out. Generally, significant reduction in the relative error (RE%) and root mean square error has been achieved. Utilizing nu-SVM-type model through tenfold cross-validation procedure could achieve outstanding performance accuracy level with RE% less than 2% and CR = 0.9987. The study demonstrates high potential for applying SVM in detecting the settlement behavior of SC prediction and ascertains that SVM could be effectively used for settlement stone columns analysis.

  相似文献   
9.
The Nile River is considered the main life artery for so many African countries especially Egypt. Therefore, it is of the essence to preserve its water and utilize it very efficiently. Developing inflow-forecasting model is considered the technical way to effectively achieve such preservation. The hydrological system of the Nile River under consideration has several dams and barrages that are equipped with control gates. The improvement of these hydraulic structures’ criteria for operation can be assessed if reliable forecasts of inflows to the reservoir are available. Recently, the authors developed a forecasting model for the natural inflow at Aswan High Dam (AHD) based on Artificial Intelligence (AI). This model was developed based on the historical inflow data of the AHD and successfully provided accurate inflow forecasts with error less than 10%. However, having several forecasting models based on different types of data increase the level of confidences of the water resources planners and AHD operators. In this study, two forecasting model approach based on Radial Basis Function Neural Network (RBFNN) method for the natural inflow at AHD utilizing the stream flow data of the monitoring stations upstream the AHD is developed. Natural inflow data collected over the last 30 years at four monitoring stations upstream AHD were used to develop the model and examine its performance. Inclusive data analysis through examining cross-correlation sequences, water traveling time, and physical characteristics of the stream flow data have been developed to help reach the most suitable RBFNN model architecture. The Forecasting Error (FE) value of the error and the distribution of the error are the two statistical performance indices used to evaluate the model accuracy. In addition, comprehensive comparison analysis is carried out to evaluate the performance of the proposed model over those recently developed for forecasting the inflow at AHD. The results of the current study showed that the proposed model improved the forecasting accuracy by 50% for the low inflow season, while keep the forecasting accuracy in the same range for the high inflow season.  相似文献   
10.

Welding processes are considered as an essential component in most of industrial manufacturing and for structural applications. Among the most widely used welding processes is the shielded metal arc welding (SMAW) due to its versatility and simplicity. In fact, the welding process is predominant procedure in the maintenance and repair industry, construction of steel structures and also industrial fabrication. The most important physical characteristics of the weldment are the bead geometry which includes bead height and width and the penetration. Different methods and approaches have been developed to achieve the acceptable values of bead geometry parameters. This study presents artificial intelligence techniques (AIT): For example, radial basis function neural network (RBF-NN) and multilayer perceptron neural network (MLP-NN) models were developed to predict the weld bead geometry. A number of 33 plates of mild steel specimens that have undergone SMAW process are analyzed for their weld bead geometry. The input parameters of the SMAW consist of welding current (A), arc length (mm), welding speed (mm/min), diameter of electrode (mm) and welding gap (mm). The outputs of the AIT models include property parameters, namely penetration, bead width and reinforcement. The results showed outstanding level of accuracy utilizing RBF-NN in simulating the weld geometry and very satisfactorily to predict all parameters in comparison with the MLP-NN model.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号