首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学工业   1篇
建筑科学   1篇
自动化技术   27篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   2篇
  2004年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
In this paper, we propose a method for retrieving promising candidate solutions in case-based problem solving. Our method, referred to as credible case-based inference, makes use of so-called similarity profiles as a formal model of the key hypothesis underlying case-based reasoning (CBR), namely, the assumption that similar problems have similar solutions. Proceeding from this formalization, it becomes possible to derive theoretical properties of the corresponding inference scheme in a rigorous way. In particular, it can be shown that, under mild technical conditions, a set of candidates covers the true solution with high probability. Thus, the approach supports an important subtask in CBR, namely, to generate potential solutions for a new target problem in a sound manner and hence contributes to the methodical foundations of CBR. Due to its generality, it can be employed for different types of performance tasks and can easily be integrated in existing CBR systems.  相似文献   
2.
We study the problem of label ranking, a machine learning task that consists of inducing a mapping from instances to rankings over a finite number of labels. Our learning method, referred to as ranking by pairwise comparison (RPC), first induces pairwise order relations (preferences) from suitable training data, using a natural extension of so-called pairwise classification. A ranking is then derived from a set of such relations by means of a ranking procedure. In this paper, we first elaborate on a key advantage of such a decomposition, namely the fact that it allows the learner to adapt to different loss functions without re-training, by using different ranking procedures on the same predicted order relations. In this regard, we distinguish between two types of errors, called, respectively, ranking error and position error. Focusing on the position error, which has received less attention so far, we then propose a ranking procedure called ranking through iterated choice as well as an efficient pairwise implementation thereof. Apart from a theoretical justification of this procedure, we offer empirical evidence in favor of its superior performance as a risk minimizer for the position error.  相似文献   
3.
4.
Weighted voting is the commonly used strategy for combining predictions in pairwise classification. Even though it shows good classification performance in practice, it is often criticized for lacking a sound theoretical justification. In this paper, we study the problem of combining predictions within a formal framework of label ranking and, under some model assumptions, derive a generalized voting strategy in which predictions are properly adapted according to the strengths of the corresponding base classifiers. We call this strategy adaptive voting and show that it is optimal in the sense of yielding a MAP prediction of the class label of a test instance. Moreover, we offer a theoretical justification for weighted voting by showing that it yields a good approximation of the optimal adaptive voting prediction. This result is further corroborated by empirical evidence from experiments with real and synthetic data sets showing that, even though adaptive voting is sometimes able to achieve consistent improvements, weighted voting is in general quite competitive, all the more in cases where the aforementioned model assumptions underlying adaptive voting are not met. In this sense, weighted voting appears to be a more robust aggregation strategy.  相似文献   
5.
6.
7.
A systematic approach to the assessment of fuzzy association rules   总被引:3,自引:0,他引:3  
In order to allow for the analysis of data sets including numerical attributes, several generalizations of association rule mining based on fuzzy sets have been proposed in the literature. While the formal specification of fuzzy associations is more or less straightforward, the assessment of such rules by means of appropriate quality measures is less obvious. Particularly, it assumes an understanding of the semantic meaning of a fuzzy rule. This aspect has been ignored by most existing proposals, which must therefore be considered as ad-hoc to some extent. In this paper, we develop a systematic approach to the assessment of fuzzy association rules. To this end, we proceed from the idea of partitioning the data stored in a database into examples of a given rule, counterexamples, and irrelevant data. Evaluation measures are then derived from the cardinalities of the corresponding subsets. The problem of finding a proper partition has a rather obvious solution for standard association rules but becomes less trivial in the fuzzy case. Our results not only provide a sound justification for commonly used measures but also suggest a means for constructing meaningful alternatives.
Henri PradeEmail:
  相似文献   
8.
Most of the multi-label classification (MLC) methods proposed in recent years intended to exploit, in one way or the other, dependencies between the class labels. Comparing to simple binary relevance learning as a baseline, any gain in performance is normally explained by the fact that this method is ignoring such dependencies. Without questioning the correctness of such studies, one has to admit that a blanket explanation of that kind is hiding many subtle details, and indeed, the underlying mechanisms and true reasons for the improvements reported in experimental studies are rarely laid bare. Rather than proposing yet another MLC algorithm, the aim of this paper is to elaborate more closely on the idea of exploiting label dependence, thereby contributing to a better understanding of MLC. Adopting a statistical perspective, we claim that two types of label dependence should be distinguished, namely conditional and marginal dependence. Subsequently, we present three scenarios in which the exploitation of one of these types of dependence may boost the predictive performance of a classifier. In this regard, a close connection with loss minimization is established, showing that the benefit of exploiting label dependence does also depend on the type of loss to be minimized. Concrete theoretical results are presented for two representative loss functions, namely the Hamming loss and the subset 0/1 loss. In addition, we give an overview of state-of-the-art decomposition algorithms for MLC and we try to reveal the reasons for their effectiveness. Our conclusions are supported by carefully designed experiments on synthetic and benchmark data.  相似文献   
9.
10.
As a field, Grammatical Inference addresses both theoretical and empirical learning problems, and the collection of papers within this special issue attests both to the diversity of these problems as well as the advances and insights that are being made by the researchers working within it. Thus we hope this special issue is of interest to the readership of Machine Learning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号