首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85311篇
  免费   4405篇
  国内免费   2914篇
电工技术   3302篇
技术理论   5篇
综合类   3572篇
化学工业   13565篇
金属工艺   5292篇
机械仪表   3933篇
建筑科学   4384篇
矿业工程   1181篇
能源动力   2564篇
轻工业   7027篇
水利工程   1265篇
石油天然气   3400篇
武器工业   401篇
无线电   8675篇
一般工业技术   15152篇
冶金工业   8879篇
原子能技术   1333篇
自动化技术   8700篇
  2023年   752篇
  2022年   1468篇
  2021年   2047篇
  2020年   1566篇
  2019年   1410篇
  2018年   1882篇
  2017年   2000篇
  2016年   1978篇
  2015年   2283篇
  2014年   2992篇
  2013年   5039篇
  2012年   4457篇
  2011年   5214篇
  2010年   4434篇
  2009年   4644篇
  2008年   4532篇
  2007年   4401篇
  2006年   3920篇
  2005年   3382篇
  2004年   2655篇
  2003年   2224篇
  2002年   2176篇
  2001年   2042篇
  2000年   1829篇
  1999年   1894篇
  1998年   2832篇
  1997年   2249篇
  1996年   1955篇
  1995年   1434篇
  1994年   1089篇
  1993年   1020篇
  1992年   813篇
  1991年   728篇
  1990年   637篇
  1989年   587篇
  1988年   455篇
  1987年   446篇
  1986年   418篇
  1985年   405篇
  1984年   328篇
  1983年   312篇
  1982年   313篇
  1981年   311篇
  1980年   367篇
  1979年   349篇
  1978年   296篇
  1977年   416篇
  1976年   636篇
  1975年   312篇
  1973年   313篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Malondialdehyde (MDA) was selected to represent a secondary by-product of lipid peroxidation during rice ageing. This study aimed to investigate the effects of MDA modification on the structural characteristics of rice protein. The results showed that as MDA concentration increased, rice protein carbonyl and disulphide groups increased, but sulphydryl content decreased. The blue shift of maximum fluorescence peak, the decrease of rice protein intrinsic fluorescence intensity and the reduction of surface hydrophobicity indicated the formation of protein aggregates caused by MDA oxidative modification. The results of molecular weight distribution and particle size distribution showed that MDA modification resulted in the formation of soluble protein aggregates, and the decrease of rice protein solubility indicated that insoluble protein aggregates were formed. Results of protein electrophoresis showed that MDA modification contributed to rice protein aggregation via non-disulphide covalent bonds. The results showed that rice protein gradually aggregated with increasing MDA concentration.  相似文献   
3.

Surface integrity characterization of manufactured component is very important as it significantly affects the in-service performance of the component. Till now, surface integrity was evaluated using conventional measurement technique like microhardness tester, X-ray diffraction, optical microscopy and surface roughness tester. But, this technique being laboratory based cannot be used for in-service monitoring of the surface integrity. The present study focuses on the characterization of surface integrity upon electric discharge machined sample using non-destructive magnetic Barkhausen noise technique. Electric discharge machining was performed in die-sinking mode on die steel using copper–tungsten electrode (negative polarity). Experiment was performed by selecting different levels of peak current, gap voltage and pulse on time. Surface integrity characteristics like microhardness change, residual stress, microstructural alteration and surface roughness were analysed using microhardness tester, X-ray diffraction, optical microscopy and surface roughness tester, respectively, and were then correlated with magnetic parameter like root mean square value and peak value obtained from Barkhausen noise signal. The results show a good correlation between magnetic parameter (RMS and Peak value) of Barkhausen noise with the microhardness and surface roughness of the machined sample.

  相似文献   
4.
5.
Large‐scale production of hydrogen from water‐alkali electrolyzers is impeded by the sluggish kinetics of hydrogen evolution reaction (HER) electrocatalysts. The hybridization of an acid‐active HER catalyst with a cocatalyst at the nanoscale helps boost HER kinetics in alkaline media. Here, it is demonstrated that 1T–MoS2 nanosheet edges (instead of basal planes) decorated by metal hydroxides form highly active edge 1T‐MoS 2 / edge Ni ( OH ) 2 heterostructures, which significantly enhance HER performance in alkaline media. Featured with rich edge 1T‐MoS 2 / edge Ni ( OH ) 2 sites, the fabricated 1T–MoS2 QS/Ni(OH)2 hybrid (quantum sized 1T–MoS2 sheets decorated with Ni(OH)2 via interface engineering) only requires overpotentials of 57 and 112 mV to drive HER current densities of 10 and 100 mA cm?2, respectively, and has a low Tafel slope of 30 mV dec?1 in 1 m KOH. So far, this is the best performance for MoS2‐based electrocatalysts and the 1T–MoS2 QS/Ni(OH)2 hybrid is among the best‐performing non‐Pt alkaline HER electrocatalysts known. The HER process is durable for 100 h at current densities up to 500 mA cm?2. This work not only provides an active, cost‐effective, and robust alkaline HER electrocatalyst, but also demonstrates a design strategy for preparing high‐performance catalysts based on edge‐rich 2D quantum sheets for other catalytic reactions.  相似文献   
6.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   
7.
8.
Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.  相似文献   
9.
10.
Rapid synthesis of silver nanowires(Ag NWs) with high quality and a broad processing window is challenging because of the low selectivity of the formation of multiply twinned particles at the nucleation stage for subsequent Ag NWs growth.Herein we report a systematic study of the water-involved heterogeneous nucleation of Ag NWs with high rate(less than 20 min) in a simple and scalable preparation method.Using glycerol as a reducing agent and a solvent with a high boiling point,the reaction is rapidly heated to 210 ℃ in air to synthesize Ag NWs with a very high yield in gram level.It is noted that the addition of a small dose of water plays a key role for obtaining highly pure Ag NWs in high yield,and the optimal water/glycerol ratio is0.25%.After investigating a series of forming factors including reaction temperature and dose of catalysts,the formation kinetics and mechanism of the Ag NWs are proposed.Compared to other preparation methods,our strategy is simple and reproducible.These Ag NWs show a strong Raman enhancement effect for organic molecules on their surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号