首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   3篇
电工技术   1篇
化学工业   34篇
建筑科学   1篇
轻工业   130篇
无线电   3篇
一般工业技术   8篇
冶金工业   4篇
自动化技术   17篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2008年   3篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   7篇
  1998年   11篇
  1997年   7篇
  1996年   2篇
  1995年   5篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   9篇
  1990年   5篇
  1989年   11篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   8篇
  1984年   7篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   13篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   3篇
  1969年   2篇
  1968年   2篇
  1967年   2篇
  1965年   1篇
  1964年   2篇
  1962年   1篇
排序方式: 共有198条查询结果,搜索用时 31 毫秒
1.
2.
3.
    
Zusammenfassung Die Aromastoffe wurden aus Kirschsaft isoliert durch simultane Destillation/Extraktion (Extrakt I) und durch Destillation in Vakuum mit anschließender Extraktion des Destillates (Extrakt II). Die beiden Extrakte wurden entsäuert, fraktioniert und durch HRGC analysiert. Die chemischen Strukturen wurden nur von den Aromastoffen analysiert, die im Sniffing-port nach der HRGC-Trennung zu erkennen waren. Identifiziert wurden 28 Aromastoffe im Extrakt I und 18 im Extrakt II; 16 davon enthielt auch Extrakt I. Beim Abriechen der schrittweise verdünnten Extrakte im Sniffing-port wurden in beiden Extrakten dieselben sieben Verbindungen mit den höchsten Aromawerten gefunden: Benzaldehyd, Linalool, Hexanal, 2(E)-Hexanal, Phenylacetaldehyd, 2(E),6(Z)-Nonadienal und Eugenol. Extrakt I enthielt zusätzlich einen fruchtigen Aromastoff unbekannter Struktur mit hohem Aromawert.
Identification of highly aromatic volatile flavour compounds from cherries (Prunus cerasus L.)
Summary The flavour compounds were isolated from cherry juice by simultaneous distillation/extraction (extract I) and also by vacuum distillation followed by extraction of the condensate (extract II). Both extracts were freed from the acids, fractionated and then analyzed by HRGC. The chemical structures of only the flavour compounds detectable at the sniffing-port of the HRGC-effluent were determined. 28 Flavour compounds were identified in extract I; 18 in extract II of which 16 occurred also in extract I. Sniffing the stepwise diluted extracts I and II revealed the same seven compounds with the highest aroma values: benzaldehyde, linalool, hexanal, 2(E)-hexanal, phenylacetaldehyde, 2(E),6(Z)-nonadienal and eugenol. Extract I contained in addition a flavour compound of high aroma value, whose structure is unknown.
  相似文献   
4.
    
Zusammenfassung Sieben Aromastoffe, isoliert durch Destillation im Vakuum aus Sauer- und Süßkirschprodukten, wurden vergleichend analysiert. In den frisch gepreßten Säften aus je fünf Sorten Sauer- und Süßkirschen wurden große Konzentrationsunterschiede (gm/l) gefunden: Benzaldehyd (18–393), Linalool (0,5–1,7), Hexanal (0,3–54,7), 2(E)-Hexenal (2,4220), 2(E),6(Z)-Nonadienal (0,1–2,4), Phenylacetaldehyd (2,1–5,6) und Eugenol (1,0–22,2). Die Benzaldehydkonzentration zeigte die höchste Korrelation zur Erkennungsschwelle für den Kirschgeruch der Säfte. Bei der Herstellung von Konfitüren veränderte sich die Zusammensetzung der Aromastoffe: Benzaldehyd und Linalool nahmen um den Faktor 7 bzw. 13 zu; Hexanal, 2(E)-Hexenal sowie Phenylacetaldehyd nahmen stark ab. Der Anstieg von Benzaldehyd und Linalool, der auch bei der simultanen Destillation/Extraktion der Säfte auftrat, beruht auf einer Hydrolyse entsprechender Glykoside, die durch eine Hitzebehandlung stark beschleunigt wird.
Quantitative analysis of the volatile flavour compounds having high aroma values from sour (Prunus cerasus L.) and sweet (Prunus apium L.) cherry juices and jams
Summary The analysis results for seven of the aroma compounds obtained by vacuum distillation from sweet and sour cherry products were compared. The freshly pressed juices from 5 varieties of sour and 5 varieties of sweet cherries showed great differences in concentrations (g/1): benzaldehyde (18–393), linalool (0.5–1.7), hexanal (0.3–54.7), 2(E)-hexenal (2.4–220), 2(E),6(Z)-nonadienal (0.1–2.4), phenylacetaldehyde (2.1–5.6) and eugenol (1.0–22.2). The benzaldehyde content of the juices showed the highest correlation to the recognition threshold of the cherry aroma note. The cherry jam showed a drastic change in the aroma composition: benzaldehyde and linalool increased greatly (7 and 13-times, respectively), while hexanal, 2(E)-hexenal and phenylacetaldehyde strongly decreased. The increase in benzaldehyde and linalool, which was also observed during simultaneous distillation/extraction of the juices, is caused by the hydrolysis of the corresponding glycosides during the heat treatments.
  相似文献   
5.
The flavour of virgin olive oil was investigated by means of an aroma extract dilution analysis. A comparative study of four oil samples differing in the flavour, indicated that the following odorants were mainly responsible for the odour notes given in brackets: (Z)-3-hexenol, hexanal, (E)-2-hexenal and (Z)-3-hexenal (green), ethyl 2-methylbutyrate, (Z)-3-hexenyl acetate and ethyl cyclohexanoate (fruity), (E,E)-2,4-decadienal, (E)- and (Z)-2-nonenal (fatty) and 4-methoxy-2-methyl-2-butanethiol (black currant-like).  相似文献   
6.
    
Zusammenfassung Achtzehn Fettsäuren, Fettsäuremethylester und Fettalkohole, emulgiert in Wasser mit Sucrosepalmitatstearat, wurden auf ihre Geschmacksqualität untersucht; bei bitterschmeckenden Verbindungen wurden die Schwellenwerte bestimmt. Die Intensität des Bittergeschmacks von Fettsäuren und Fettalkoholen hängt von der Länge des Alkylrestes sowie von der Anzahl, der Konfiguration und der Position der Doppelbindungen ab. Linol- und Linolensäuremethylester schmecken nicht bitter. -Linolenylalkohol und -Linolensäure haben die niedrigsten Schwellenwerte (0,2–0,5 bzw. 0,6–1,2 mmol/l) und liegen etwa im gleichen Bereich wie Coffein (0,8–1,2 mmol/l).
Studies of the bitter taste of fatty acid emulsions
Summary Eighteen fatty acids, methyl esters of fatty acids and fatty alcohols emulsified in water with sucrose palmitate stearate were tested for taste quality. In the case of bitter tasting compounds the taste thresholds were determined. The intensity of bitter taste of fatty acids and fatty alcohols is dependent on the length of the hydrocarbon chain and on the number, the configuration and the positions of double bonds. The methyl esters of linoleic and linolenic acid are not bitter. Gamma-linolenyl alcohol and alphalinolenic acid have the lowest threshold values (0.2–0.5 and 0.6–1.2 mmol/l), similar to that of caffeine (0.8–1.2 mmol/l).
  相似文献   
7.
In lipids isolated from poppy seeds which tasted "burning-bitter" the off-taste was associated with the free fatty acids fraction. In this fraction linoleic acid predominates, while oxidized fatty acids were among the minor constituents. The taste threshold of linoleic acid emulsified in water with monolinolein lies in the range of 4.0-6.0 mumol/ml. On the basis of its high concentration and relatively low taste threshold we conclude that free linoleic acid contributes significantly to the "burning-bitter" off-taste in poppy seeds.  相似文献   
8.
Isolation and purification of soya bean lipoxygenase (linoleate: O2 oxidoreductase, EC, 1.13.11.12) on Sephadex G-200, DEAE-cellulose and by isolectric focusing yields two isoenzymes of the L- 2 type (optimum pH 6.5) and two of the L-1 type (optimum pH9.0). Different crude extracts from soya beans as well as the purified L-2 isoenzymes exhibit the same capacity for co-oxidation of beta-carotene and canthaxanthine, when the comparison is based upon equal lipoxygenase activities. In contrast to L-2 the alkaline lipoxygenase L-1 is a poor "carotene oxidase".  相似文献   
9.
Visualizing 3D flow   总被引:2,自引:0,他引:2  
We discuss volume line integral convolution (LIC) techniques for effectively visualizing 3D flow, including using visibility-impeding halos and efficient asymmetric filter kernels. Specifically, we suggest techniques for selectively emphasizing critical regions of interest in a flow; facilitating the accurate perception of the 3D depth and orientation of overlapping streamlines; efficiently incorporating an indication of orientation into a flow representation; and conveying additional information about related scalar quantities such as temperature or vorticity over a flow via subtle, continuous line width and color variations  相似文献   
10.
 The odour thresholds (i.e. the lowest concentration at which an odour can be detected) of 80 alkylpyrazines, most of them synthesized, were determined by gas chromatography-olfactometry. Trimethylpyrazine (1) had the lowest threshold (50 ng/l air) amongst mono-, di-, tri- and tetramethylpyrazine. Substitution of the methyl group in position 2 of 1 by an ethyl group yielded 2-ethyl-3,5-dimethylpyrazine (2) showing a 4500-fold lower odour threshold than 1. The thresholds of 2-ethenyl-3,5-dimethylpyrazine (3), 2,3-diethyl-5-methylpyrazine (4) and 2-ethenyl-3-ethyl-5-methylpyrazine (5) were as low as that of 2. The threshold of 3-ethenyl-2-ethyl-5-methylpyrazine was 8000 times higher than that of 5, indicating that an ethenyl group was only tolerated in position 2, but not in position 3. A further increase in the odour threshold was found when the ethenyl or the ethyl group was located in position 5. Substitution of the ethyl group of 2 by a (Z)-1-propenyl group increased the threshold only by a factor of 5, whereas the (E)-isomer and the 2-propenyl group enhanced the threshold by factors of 160 and 27000, respectively. Also a propyl, butyl, pentyl, isobutyl or hexyl group in position 2 of 2 was too bulky, and in these molecules the odour threshold was at least 2200 times higher than that of 2. The geometrical structure of a theoretical receptor was obtained by superimposing the minimized structures of pyrazines with low thresholds (Chem-X force-field minimization). Sterically forbidden regions in the resulting model were found by superimposing pyrazines with high thresholds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号