首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学工业   4篇
能源动力   2篇
轻工业   1篇
无线电   4篇
一般工业技术   9篇
自动化技术   2篇
  2022年   1篇
  2021年   2篇
  2014年   2篇
  2013年   2篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有22条查询结果,搜索用时 718 毫秒
1.
2.
Measuring the 3D motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the 2D motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the 3D displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a 3D displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue.  相似文献   
3.

Realistic music generation has always remained as a challenging problem as it may lack structure or rationality. In this work, we propose a deep learning based music generation method in order to produce old style music particularly JAZZ with rehashed melodic structures utilizing a Bi-directional Long Short Term Memory (Bi-LSTM) Neural Network with attention. Owing to the success in modelling long-term temporal dependencies in sequential data and its success in case of videos, Bi-LSTMs with attention serves as a natural choice and early utilization in music generation. We validate in our experiments that Bi-LSTMs with attention are able to preserve the richness and technical nuances of the music performed.

  相似文献   
4.
Complexity and uncertainty in modern robots and other autonomous systems make it difficult to design controllers for such systems that can achieve desired levels of precision and robustness. Therefore learning methods are being incorporated into controllers for such systems, thereby providing the adaptibility necessary to meet the performance demands of the task. We argue that for learning tasks arising frequently in control applications, the most useful methods in practice probably are those we call direct associative reinforcement learning methods. We describe direct reinforcement learning methods and also illustrate with an example the utility of these methods for learning skilled robot control under uncertainty.  相似文献   
5.
6.
The fabrication of a mechanically flexible, piezoelectric nanocomposite material for strain sensing applications is reported. Nanocomposite material consisting of zinc oxide (ZnO) nanostructures embedded in a stable matrix of paper (cellulose fibers) is prepared by a solvothermal method. The applicability of this material as a strain sensor is demonstrated by studying its real‐time current response under both static and dynamic mechanical loading. The material presented highlights a novel approach to introduce flexibility into strain sensors by embedding crystalline piezoelectric material in a flexible cellulose‐based secondary matrix.  相似文献   
7.
8.
Graphene coating on copper (Cu) is shown to increase the resistance of the metal to electrochemical degradation by one and half orders of magnitude. Detailed electrochemical characterization in aggressive chloride environment shows the impedance of Cu increasing dramatically and the anodic and cathodic current densities of the coated Cu becoming nearly 1–2 orders of magnitude smaller when coated with graphene. The observations are counterintuitive as graphite in contact with metals increases metallic corrosion. The results can bring paradigm changes in the development of anti-corrosion coatings using conformal, ultrathin graphene films.  相似文献   
9.
An improved MOSFET model for circuit simulation   总被引:3,自引:0,他引:3  
Problems that have continued to remain in some of the recently published MOSFET compact models are demonstrated in this paper. Of particular interest are discontinuities observed in these models at the boundary between forward and reverse mode operation. A new MOSFET model is presented that overcomes the errors present in state-of-the-art models. Comparison with measured data is also presented to validate the new model  相似文献   
10.
Nitrogen incorporated tungsten oxide (WO3) films were grown by reactive magnetron sputter-deposition by varying the nitrogen content in the reactive gas mixture keeping the deposition temperature fixed at 400 °C. The crystal structure, surface morphology, chemical composition, and electrical resistivity of nitrogen doped WO3 films were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrical conductivity measurements. The results indicate that the nitrogen-incorporation induced changes in the microstructure and electrical properties of WO3 films are significant. XRD measurements coupled with SEM analysis indicate that the increasing nitrogen content decreases the grain size and crystal quality. The nitrogen concentration increases from 0 at.% to 1.35 at.% with increasing nitrogen flow rate from 0 to 20 sccm. The corresponding dc electrical conductivity of the films had shown a decreasing trend with increasing nitrogen content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号