首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
化学工业   1篇
无线电   1篇
一般工业技术   3篇
自动化技术   1篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2012年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (≈1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280–850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W−1) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging.  相似文献   
2.
Ultrathin film preparations of single-walled carbon nanotube (SWNT) allow economical utilization of nanotube properties in electronics applications. Recent advances have enabled production of micrometer scale SWNT transistors and sensors but scaling these devices down to the nanoscale, and improving the coupling of SWNTs to other nanoscale components, may require techniques that can generate a greater degree of nanoscale geometric order than has thus far been achieved. Here, we introduce linker-induced surface assembly, a new technique that uses small structured DNA linkers to assemble solution dispersed nanotubes into parallel arrays on charged surfaces. Parts of our linkers act as spacers to precisely control the internanotube separation distance down to <3 nm and can serve as scaffolds to position components such as proteins between adjacent parallel nanotubes. The resulting arrays can then be stamped onto other substrates. Our results demonstrate a new paradigm for the self-assembly of anisotropic colloidal nanomaterials into ordered structures and provide a potentially simple, low cost, and scalable route for preparation of exquisitely structured parallel SWNT films with applications in high-performance nanoscale switches, sensors, and meta-materials.  相似文献   
3.
In this research, potential of reusing bleach water bath was examined with respect to its effect on whiteness of the cotton fabric exposed to 50 g/h of ozone on pilot scale for 45 min with 3 kg of fabric charged fresh at each trial, along with the evaluation of the economic viability of this technology in terms of profit per batch as well as profit per unit product (fabric) computed by Cost of Goods Sold statement. Results have shown that water can be reused with insignificant change in whiteness, revolving around 54% and 60%, and that it harnesses a 7 Rupees profit per unit fabric or 21 Rupees profit per cycle, which seems quite acceptable at existing bleached fabric sale price.  相似文献   
4.
Silicon photonics has demonstrated great potential in ultrasensitive biochemical sensing. However, it is challenging for such sensors to detect small ions which are also of great importance in many biochemical processes. A silicon photonic ion sensor enabled by an ionic dopant–driven plasmonic material is introduced here. The sensor consists of a microring resonator (MRR) coupled with a 2D restacked layer of near‐infrared plasmonic molybdenum oxide. When the 2D plasmonic layer interacts with ions from the environment, a strong change in the refractive index results in a shift in the MRR resonance wavelength and simultaneously the alteration of plasmonic absorption leads to the modulation of MRR transmission power, hence generating dual sensing outputs which is unique to other optical ion sensors. Proof‐of‐concept via a pH sensing model is demonstrated, showing up to 7 orders improvement in sensitivity per unit area across the range from 1 to 13 compared to those of other optical pH sensors. This platform offers the unique potential for ultrasensitive and robust measurement of changes in ionic environment, generating new modalities for on‐chip chemical sensors in the micro/nanoscale.  相似文献   
5.
Plasmonic biosensors based on noble metals generally suffer from low sensitivities if the perturbation of refractive‐index in the ambient is not significant. By contrast, the features of degenerately doped semiconductors offer new dimensions for plasmonic biosensing, by allowing charge‐based detection. Here, this concept is demonstrated in plasmonic hydrogen doped molybdenum oxides (HxMoO3), with the morphology of 2D nanodisks, using a representative enzymatic glucose sensing model. Based on the ultrahigh capacity of the molybdenum oxide nanodisks for accommodating H+, the plasmon resonance wavelengths of HxMoO3 are shifted into visible‐near‐infrared wavelengths. These plasmonic features alter significantly as a function of the intercalated H+ concentration. The facile H+ deintercalation out of HxMoO3 provides an exceptional sensitivity and fast kinetics to charge perturbations during enzymatic oxidation. The optimum sensing response is found at H1.55MoO3, achieving a detection limit of 2 × 10?9m at 410 nm, even when the biosensing platform is adapted into a light‐emitting diode‐photodetector setup. The performance is superior in comparison to all previously reported plasmonic enzymatic glucose sensors, providing a great opportunity in developing high performance biosensors.  相似文献   
6.
Neural Computing and Applications - In late 2019, a new Coronavirus disease (COVID-19) appeared in Wuhan, Hubei Province, China. The virus began to spread throughout many countries, affecting a...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号