首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
建筑科学   1篇
自动化技术   3篇
  2008年   2篇
  2007年   2篇
排序方式: 共有4条查询结果,搜索用时 13 毫秒
1
1.
The construction of more capable bipedal robots highly depends on the ability to measure their performance. This performance is often measured in terms of speed or energy efficiency, but these properties are secondary to the robot's ability to prevent falling given the inevitable presence of disturbances, i.e., its disturbance rejection. Existing disturbance rejection measures (zero moment point, basin of attraction, Floquet multipliers) are unsatisfactory due to conservative assumptions, long computation times, or bad correlation to actual disturbance rejection. This paper introduces a new measure called the Gait Sensitivity Norm that combines a short calculation time with good correlation to actual disturbance rejection. It is especially suitable for implementation on limit cycle walkers, a class of bipeds that currently excels in terms of energy efficiency, but still has limited disturbance rejection capabilities. The paper contains an explanation of the Gait Sensitivity Norm and a validation of its value on a simple walking model as well as on a real bipedal robot. The disturbance rejection of the simple model is studied for variations of floor slope, foot radius, and hip spring stiffness. We show that the calculation speed is as fast as the standard Floquet multiplier analysis, while the actual disturbance rejection is correctly predicted with 93% correlation on average.  相似文献   
2.
Passive dynamic walking is a promising idea for the development of simple and efficient two-legged walking robots. One of the difficulties with this concept is the addition of a stable upper body; on the one hand, a passive swing leg motion must be possible, whereas on the other hand, the upper body (an inverted pendulum) must be stabilized via the stance leg. This paper presents a solution to the problem in the form of a bisecting hip mechanism. The mechanism is studied with a simulation model and a prototype based on the concept of passive dynamic walking. The successful walking results of the prototype show that the bisecting hip mechanism forms a powerful ingredient for stable, simple, and efficient bipeds  相似文献   
3.
Limit cycle walkers are bipeds that exhibit a stable cyclic gait without requiring local controllability at all times during gait. A well-known example of limit cycle walking is McGeer's ldquopassive dynamic walking,rdquo but the concept expands to actuated bipeds as involved in this study. One of the stabilizing effects in limit cycle walkers is the dissipation of energy that occurs when the swing foot hits the ground. We hypothesize that this effect can be enhanced with a negative relation between the step length and step time. This relation is implemented through an open-loop strategy called swing-leg retraction; a predefined time trajectory for the swing leg makes the swing leg move backwards just prior to foot impact. In this paper, we study the effect of swing-leg retraction through three bipeds; a simple point mass simulation model, a realistic simulation model, and a physical prototype. Their stability is analyzed using Floquet multipliers, followed by an evaluation of how well disturbances are handled using the Gait Sensitivity Norm. We find that mild swing-leg retraction is optimal for the disturbance rejection of a limit cycle walker, as it results in a system response that is close to critically damped, rejecting the disturbance in the fewest steps. Slower retraction results in an overdamped response, characterized by a positive dominant Floquet multiplier. Likewise, faster retraction results in an underdamped response, characterized by a negative Floquet multiplier.  相似文献   
4.
This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号