首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3876篇
  免费   292篇
  国内免费   23篇
电工技术   63篇
综合类   11篇
化学工业   803篇
金属工艺   70篇
机械仪表   127篇
建筑科学   127篇
矿业工程   2篇
能源动力   171篇
轻工业   265篇
水利工程   24篇
石油天然气   10篇
无线电   697篇
一般工业技术   763篇
冶金工业   269篇
原子能技术   17篇
自动化技术   772篇
  2024年   7篇
  2023年   34篇
  2022年   96篇
  2021年   125篇
  2020年   100篇
  2019年   115篇
  2018年   133篇
  2017年   112篇
  2016年   156篇
  2015年   125篇
  2014年   174篇
  2013年   338篇
  2012年   247篇
  2011年   233篇
  2010年   200篇
  2009年   226篇
  2008年   198篇
  2007年   186篇
  2006年   134篇
  2005年   116篇
  2004年   95篇
  2003年   93篇
  2002年   88篇
  2001年   68篇
  2000年   60篇
  1999年   71篇
  1998年   124篇
  1997年   77篇
  1996年   58篇
  1995年   54篇
  1994年   42篇
  1993年   40篇
  1992年   34篇
  1991年   25篇
  1990年   26篇
  1989年   26篇
  1988年   19篇
  1987年   17篇
  1986年   10篇
  1985年   11篇
  1984年   14篇
  1983年   16篇
  1982年   8篇
  1981年   10篇
  1980年   7篇
  1977年   7篇
  1976年   6篇
  1974年   6篇
  1973年   4篇
  1970年   5篇
排序方式: 共有4191条查询结果,搜索用时 31 毫秒
1.
2.
Endoplasmic reticulum (ER) stress response is an adaptive program to cope with cellular stress that disturbs the function and homeostasis of ER, which commonly occurs during cancer progression to late stage. Late-stage cancers, mostly requiring chemotherapy, often develop treatment resistance. Chemoresistance has been linked to ER stress response; however, most of the evidence has come from studies that correlate the expression of stress markers with poor prognosis or demonstrate proapoptosis by the knockdown of stress-responsive genes. Since ER stress in cancers usually persists and is essentially not induced by genetic manipulations, we used low doses of ER stress inducers at levels that allowed cell adaptation to occur in order to investigate the effect of stress response on chemoresistance. We found that prolonged tolerable ER stress promotes mesenchymal–epithelial transition, slows cell-cycle progression, and delays the S-phase exit. Consequently, cisplatin-induced apoptosis was significantly decreased in stress-adapted cells, implying their acquisition of cisplatin resistance. Molecularly, we found that proliferating cell nuclear antigen (PCNA) ubiquitination and the expression of polymerase η, the main polymerase responsible for translesion synthesis across cisplatin-DNA damage, were up-regulated in ER stress-adaptive cells, and their enhanced cisplatin resistance was abrogated by the knockout of polymerase η. We also found that a fraction of p53 in stress-adapted cells was translocated to the nucleus, and that these cells exhibited a significant decline in the level of cisplatin-DNA damage. Consistently, we showed that the nuclear p53 coincided with strong positivity of glucose-related protein 78 (GRP78) on immunostaining of clinical biopsies, and the cisplatin-based chemotherapy was less effective for patients with high levels of ER stress. Taken together, this study uncovers that adaptation to ER stress enhances DNA repair and damage tolerance, with which stressed cells gain resistance to chemotherapeutics.  相似文献   
3.
Cases of isolated hepatic tuberculosis (TB) are rare. The diagnosis is often delayed or missed because of nonspecific symptoms and laboratory findings. Besides, the disease is extremely rare even in a country where TB is an alarming public health problem. This report demonstrates the difficulty in correctly diagnosing local hepatic TB. We report the case of a 62‐year‐old male patient with end‐stage renal disease treated with hemodialysis, who developed 2 months of abdominal distension and general anorexia, with hyperechoic hepatic lesions on ultrasound. Computed tomography suspected multiple liver tumors. The liver biopsy finally led to the diagnosis of TB of the liver without other involvements. We conclude that isolated hepatic TB is one of the rare forms of extrapulmonary TB in dialysis patients. A greater awareness of this rare clinical entity may prevent needless surgical interventions.  相似文献   
4.
5.
WO3 is a potential material candidate for construction of photoanode for solar driven water splitting. In this work, μm-thick porous WO3 photoanode is prepared by depositing a stable ink made of WO3 nanoparticles and Aristoflex velvet polymer in water using the doctor blade technique, followed by a sintering in air. The nature of WO3 nanoparticles, its loading mass on F-doped tin oxide electrode as well as sintering temperature are examined in order to optimize the photocatalytic activity of the resultant WO3 photoanode. The operation of WO3 photoanode is investigated by varying the light illumination direction and light incident intensity as well as changing the nature of the electrolyte. Dissolved tungsten in electrolyte is quantified by ICP-MS providing insights into the influences of electrolyte nature and operating conditions to the corrosion of WO3. It is proposed that the H2O2 and OH. radical generated as by-products of the photo-driven water oxidation on the photoanode surface are harmful species that accelerate the dissolution of WO3.  相似文献   
6.
Upconversion phosphors are known as a material system that can convert near-infrared light into visible/ultraviolet emissions by sequentially absorbing multiple photons. The studies on upconversion materials often use two rare earth (RE) ions as a sensitizer-activator pair. We investigated the influences on luminescence intensity depending on Cr-doping content (x) of hexagonal NaLu0.98–xCrxF4Er0.02 (x = 0–0.9) upconversion material by substituting Lu3+ ions with Cr3+in the absence of Gd3+. The change in upconversion luminescence intensity appears with saddle-like shape. We suggest that Cr3+ ions play the dual role as a constituent in host lattice and a sensitizer in the upconversion process. Optimal conditions for gaining the strongest upconversion emission correspond to x = 0.3–0.5, where there are effective energy transfers between Cr3+ and Er3+ ions and CrEr dimers. Apart from these values, the emission intensity decreases rapidly which can be ascribed to the absence of multiple-photon absorption for the case of low Cr3+ contents, and to the coupling between Cr3+ and/or Er3+ ions for the case of high Cr3+ contents. Magnetization and electron-spin-resonant measurements were performed to understand the correlation between the optical and magnetic properties.  相似文献   
7.
In recent years, there has been rapid expansion of glycan synthesis, fueled by the recognition that the structural complexity of sugars translates to a myriad of biological functions. Such chemical syntheses involve many challenges, mostly due to the regio- and stereochemical aspects of glycosidic bond formation. One-pot strategies were developed to assist in attaining faster and more economical access to the glycan constructs. In this front, achievements in protecting group manipulation, glycosylation, and combinations of these have been reported. Protecting group manipulations in one pot take advantage of the reaction compatibility of commonly used transformations, many of which occur in high regioselectivity. Sequential glycosylations, on the other hand, rely on leaving group orthogonalities and reactivity tuning, as well as the preactivation technique. Altogether, these approaches offer attractive means to the much needed glycan structures and, consequently, help usher in advances in glycoscience.  相似文献   
8.
9.
10.
FeO-doped TiO2 nanoparticle photocatalysts were immobilized onto the surface of fibrous activated carbon (ACF) via a sol-gel process. As an adsorbent and photocatalyst, FeO-TiO2 on immobilized ACFs (FeO-TiO2/ACF) greatly improved the photocatalysis rate of hydrogen production as compared with pure TiO2 and ACF-TiO2 under UV irradiation and visible light. The addition of ACFs surface significantly reduced the photogenerated pairs of electrons-hole recombination, thereby promoting the photocatalysis action of doped photo-metal oxides of FeO-TiO2. Co-doping of FeO onto the lattice of the TiO2 approach can improve the absorption activity of visible light through photo-metal oxide of TiO2 and further enhance hydrogen production under visible light. The photocatalytic fabrics (FeO-TiO2/ACF) were effortlessly split out from the experimental solution for re-utilization and exhibited high stability even after five complete regeneration cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号