首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
电工技术   1篇
自动化技术   12篇
  2019年   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
1.
The entity-relationship (ER) model and its accompanying ER diagrams are widely used for database design and systems analysis. Many books and articles just provide a definition of each modeling component and give examples of the pre-built ER diagrams. As a result, beginners in data modeling have a great deal of difficulty learning how to approach a given problem, what questions to ask in order to build a model, what rules to use while constructing an ER diagram, and why one diagram is better than another. The authors present step-by-step guidelines, a set of decision rules proven to be useful in building ER diagrams, and a case study problem with a preferred answer as well as a set of incorrect diagrams for the problem. These guidelines and decision rules have been successfully used in their beginning database management system course  相似文献   
2.
The multidimensional (MD) modeling, which is the foundation of data warehouses (DWs), MD databases, and On-Line Analytical Processing (OLAP) applications, is based on several properties different from those in traditional database modeling. In the past few years, there have been some proposals, providing their own formal and graphical notations, for representing the main MD properties at the conceptual level. However, unfortunately none of them has been accepted as a standard for conceptual MD modeling.

In this paper, we present an extension of the Unified Modeling Language (UML) using a UML profile. This profile is defined by a set of stereotypes, constraints and tagged values to elegantly represent main MD properties at the conceptual level. We make use of the Object Constraint Language (OCL) to specify the constraints attached to the defined stereotypes, thereby avoiding an arbitrary use of these stereotypes. We have based our proposal in UML for two main reasons: (i) UML is a well known standard modeling language known by most database designers, thereby designers can avoid learning a new notation, and (ii) UML can be easily extended so that it can be tailored for a specific domain with concrete peculiarities such as the multidimensional modeling for data warehouses. Moreover, our proposal is Model Driven Architecture (MDA) compliant and we use the Query View Transformation (QVT) approach for an automatic generation of the implementation in a target platform. Throughout the paper, we will describe how to easily accomplish the MD modeling of DWs at the conceptual level. Finally, we show how to use our extension in Rational Rose for MD modeling.  相似文献   

3.
Ray tracing requires many ray-object intersection tests. A way of reducing the number of ray-object intersection tests is to subdivide the space occupied by objects into many nonoverlapping subregions, called voxels, and to construct an octree for the subdivided space. We propose the Octree-R, an octree-variant data structure for efficient ray tracing. The algorithm for constructing the Octree-R first estimates the number of ray-object intersection tests. Then, it partitions the space along the plane that minimizes the estimated number of ray-object intersection tests. We present the results of experiments for verifying the effectiveness of the Octree-R. In the experiment, the Octree-R provides a 4% to 47% performance gain over the conventional octree. The result shows the more skewed the object distribution (as is typical for real data), the more performance gain the Octree-R achieves  相似文献   
4.
There has been a lot of research on MapReduce for big data analytics. This new class of systems sacrifices DBMS functionality such as query languages, schemas, or indexes in order to maximize scalability and parallelism. However, as high functionality of the DBMS is considered important for big data analytics as well, there have been a lot of efforts to support DBMS functionality in MapReduce. HadoopDB is the only work that directly utilizes the DBMS for big data analytics in the MapReduce framework, taking advantage of both the DBMS and MapReduce. However, HadoopDB does not support sharability for the entire data since it stores the data into multiple nodes in a shared-nothing manner—i.e., it partitions a job into multiple tasks where each task is assigned to a fragment of data. Due to this limitation, HadoopDB cannot effectively process queries that require internode communication. That is, HadoopDB needs to re-load the entire data to process some queries (e.g., 2-way joins) or cannot support some complex queries (e.g., 3-way joins). In this paper, we propose a new notion of the DFS-integrated DBMS where a DBMS is tightly integrated with the distributed file system (DFS). By using the DFS-integrated DBMS, we can obtain sharability of the entire data. That is, a DBMS process in the system can access any data since multiple DBMSs are run on an integrated storage system in the DFS. To process big data analytics in parallel, our approach use the MapReduce framework on top of a DFS-integrated DBMS. We call this framework PARADISE. In PARADISE, we employ a job splitting method that logically splits a job based on the predicate in the integrated storage system. This contrasts with physical splitting in HadoopDB. We also propose the notion of locality mapping for further optimization of logical splitting. We show that PARADISE effectively overcomes the drawbacks of HadoopDB by identifying the following strengths. (1) It has a significantly faster (by up to 6.41 times) amortized query processing performance since it obviates the need to re-load data required in HadoopDB. (2) It supports query types more complex than the ones supported by HadoopDB.  相似文献   
5.
A top-k spatial keyword query returns k objects having the highest (or lowest) scores with regard to spatial proximity as well as text relevancy. Approaches for answering top-k spatial keyword queries can be classified into two categories: the separate index approach and the hybrid index approach. The separate index approach maintains the spatial index and the text index independently and can accommodate new data types. However, it is difficult to support top-k pruning and merging efficiently at the same time since it requires two different orders for clustering the objects: the first based on scores for top-k pruning and the second based on object IDs for efficient merging. In this paper, we propose a new separate index method called Rank-Aware Separate Index Method (RASIM) for top-k spatial keyword queries. RASIM supports both top-k pruning and efficient merging at the same time by clustering each separate index in two different orders through the partitioning technique. Specifically, RASIM partitions the set of objects in each index into rank-aware (RA) groups that contain the objects with similar scores and applies the first order to these groups according to their scores and the second order to the objects within each group according to their object IDs. Based on the RA groups, we propose two query processing algorithms: (i) External Threshold Algorithm (External TA) that supports top-k pruning in the unit of RA groups and (ii) Generalized External TA that enhances the performance of External TA by exploiting special properties of the RA groups. RASIM is the first research work that supports top-k pruning based on the separate index approach. Naturally, it keeps the advantages of the separate index approach. In addition, in terms of storage and query processing time, RASIM is more efficient than the IR-tree method, which is the prevailing method to support top-k pruning to date and is based on the hybrid index approach. Experimental results show that, compared with the IR-tree method, the index size of RASIM is reduced by up to 1.85 times, and the query performance is improved by up to 3.22 times.  相似文献   
6.
The authors propose an approach that provides a theoretical foundation for the use of object-oriented databases and object-relational databases in data warehouse, multidimensional database, and online analytical processing applications. This approach introduces a set of minimal constraints and extensions to the Unified Modeling Language for representing multidimensional modeling properties for these applications. Multidimensional modeling offers two benefits. First, the model closely parallels how data analyzers think and, therefore, helps users understand data. Second, multidimensional modeling helps predict what final users want to do, thereby facilitating performance improvements. The authors are using their approach to create an automatic implementation of a multidimensional model. They plan to integrate commercial online-analytical-processing tool facilities within their GOLD model case tool as well, a task that involves data warehouse prototyping and sample data generation issues  相似文献   
7.
8.
9.
10.
Yun  Tae-Seob  Whang  Kyu-Young  Kwon  Hyuk-Yoon  Kim  Jun-Sung  Song  Il-Yeol 《World Wide Web》2019,22(6):2469-2470
World Wide Web - After our paper was published on-line, the authors have learned existence of the paper by Feuerstein et al. [Feuerstein 2009].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号