首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
一般工业技术   3篇
自动化技术   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
The appearance of an object greatly changes under different lighting conditions. Even so, previous studies have demonstrated that the appearance of an object under varying illumination conditions can be represented by a linear subspace. A set of basis images spanning such a linear subspace can be obtained by applying the principal component analysis (PCA) for a large number of images taken under different lighting conditions. Since little is known about how to sample the appearance of an object in order to correctly obtain its basis images, it was a common practice to use as many input images as possible. In this study, we present a novel method for analytically obtaining a set of basis images of an object for varying illumination from input images of the object taken properly under a set of light sources, such as point light sources or extended light sources. Our proposed method incorporates the sampling theorem of spherical harmonics for determining a set of lighting directions to efficiently sample the appearance of an object. We further consider the issue of aliasing caused by insufficient sampling of the object's appearance. In particular, we investigate the effectiveness of using extended light sources for modeling the appearance of an object under varying illumination without suffering the aliasing caused by insufficient sampling of its appearance.  相似文献   
3.
Constructing Virtual Cities by Using Panoramic Images   总被引:1,自引:0,他引:1  
Simultaneously acquired omni-directional images contain rays of 360 degree viewing directions. To take advantage of this unique characteristic, we have been developing several methods for constructing virtual cities. In this paper, we first describe a system to generate the appearance of a virtual city; the system, which is based on image-based rendering (IBR) techniques, utilizes the characteristics of omni-directional images to reduce the number of samplings required to construct such IBR images. We then describe a method to add geometric information to the IBR images; this method is based on the analysis of a sequence of omni-directional images. Then, we describe a method to seamlessly superimpose a new building model onto a previously created virtual city image; the method enables us to estimate illumination distributions by using an omni-directional camera. Finally, to demonstrate the methods' effectiveness, we describe how we implemented and applied them to urban scenes.  相似文献   
4.
JH8194 induces osteoblast differentiation, although it was originally designed to improve antifungal activity. This suggests that JH8194 is useful for implant treatment. Therefore, the aim of this study was to evaluate the osseointegration capacity of JH8194-modified titanium dental implant fixtures (JH8194-Fi). The implants were randomly implanted into the edentulous ridge of dog mandibles. Healing abutments were inserted immediately after implant placement. Three weeks later, peri-implant bone levels, the first bone-to-implant contact points, and trabecular bone formation surrounding the implants were assessed by histological and digital image analyses based on microcomputed tomography (microCT). The histological analysis revealed an enhancement of mature trabecular bone around the JH8194-Fi compared with untreated fixtures (control-Fi). Similarly, microCT combined with analysis by Zed View? also showed increased trabecular bone formation surrounding the JH8194-Fi compared with the control-Fi (Student's t-test, P < 0.05). JH8194 may offer an alternative biological modification of titanium surfaces to enhance trabecular bone formation around dental implants, which may contribute to the transient acquirement of osseointegration and the long-term success of implant therapy.  相似文献   
5.
We quantify characteristics of the informational architecture of two representative biological networks: the Boolean network model for the cell-cycle regulatory network of the fission yeast Schizosaccharomyces pombe (Davidich et al. 2008 PLoS ONE 3, e1672 (doi:10.1371/journal.pone.0001672)) and that of the budding yeast Saccharomyces cerevisiae (Li et al. 2004 Proc. Natl Acad. Sci. USA 101, 4781–4786 (doi:10.1073/pnas.0305937101)). We compare our results for these biological networks with the same analysis performed on ensembles of two different types of random networks: Erdös–Rényi and scale-free. We show that both biological networks share features in common that are not shared by either random network ensemble. In particular, the biological networks in our study process more information than the random networks on average. Both biological networks also exhibit a scaling relation in information transferred between nodes that distinguishes them from random, where the biological networks stand out as distinct even when compared with random networks that share important topological properties, such as degree distribution, with the biological network. We show that the most biologically distinct regime of this scaling relation is associated with a subset of control nodes that regulate the dynamics and function of each respective biological network. Information processing in biological networks is therefore interpreted as an emergent property of topology (causal structure) and dynamics (function). Our results demonstrate quantitatively how the informational architecture of biologically evolved networks can distinguish them from other classes of network architecture that do not share the same informational properties.  相似文献   
6.
Spectral reflectance is an intrinsic characteristic of objects that is independent of illumination and the used imaging sensors. This direct representation of objects is useful for various computer vision tasks, such as color constancy and material discrimination. In this work, we present a novel system for spectral reflectance recovery with high temporal resolution by exploiting the unique color-forming mechanism of digital light processing (DLP) projectors. DLP projectors use color wheels, which are composed of a number of color segments and rotate quickly to produce the desired colors. Making effective use of this mechanism, we show that a DLP projector can be used as a light source with spectrally distinct illuminations when the appearance of a scene under the projector’s irradiation is captured with a high-speed camera. Based on the measurements, the spectral reflectance of scene points can be recovered using a linear approximation of the surface reflectance. Our imaging system is built from off-the-shelf devices, and is capable of taking multi-spectral measurements as fast as 100 Hz. We carefully evaluated the accuracy of our system and demonstrated its effectiveness by spectral relighting of static as well as dynamic scenes containing different objects.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号