首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
化学工业   8篇
金属工艺   4篇
机械仪表   2篇
建筑科学   1篇
能源动力   3篇
无线电   9篇
一般工业技术   11篇
冶金工业   1篇
自动化技术   6篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2015年   2篇
  2013年   3篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2000年   3篇
  1998年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
The crystallization process of the eutectic composition of GdAlO_3-Al_2O_3 from the amorphous phase prepared by rapid-quenching of melt that leads to the formation of a cantaloupe skin-like microstructure was investigated using focused ion-beam scanning electron microscopy (FIB-SEM) and high-resolution transmission electron microscopy (HR-TEM).The amorphous films were heat-treated at temperatures between 1000 °C and 1500 °C for up to 30min to form the eutectic phases of GdAlO_3 and Al_2O_3.The GdAlO_3 and Al_2O_3 crystal phases that formed from the amorphous phase were identified by FIB-SEM and HR-TEM.Both components began to crystallize and grow from the amorphous phase separately at different temperatures.The formation process of these crystal phases was different from that of the ordinary eutectic microstructure solidified from the GdAlO_3-Al_2O_3 system.Therefore,the observed structure is termed "eutectic-like" for distinction.The microstructures formed from the amorphous phases at sufficiently high temperatures consisted of ultra-fine microstructures of individually crystallized components and were similar to ordinary eutectic microstructures.By heat-treating the amorphous films at 1500 °C for either 2 min,8min or 30min,the ultra-fine components of GdAlO_3 and Al_2O_3 were found to crystallize following a eutectic-like stage after 8min of heat treatment.  相似文献   
2.
This study investigates the response of water resources regarding the climate and land‐cover changes in a humid subtropical watershed during the period 1970–2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed. Temperature had a lower increase trend, and precipitation showed definite increasing trend compared to previous studies. The main trend of land‐cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Hydrologic responses to climate and land‐cover changes resulted in increases of surface run‐off (15.0%), soil water content (2.7%), evapotranspiration (20.1%) and a decrease in groundwater discharge (9.2%). We found that surface run‐off is relatively stable with precipitation, whereas groundwater discharge and soil water content are sensitive to changes in land cover, especially land cover brought about by human intervention.  相似文献   
3.
Residual thermal stresses in SiC/Ti3SiC2/SiC joining couples were calculated by Raman spectra and simulated by finite element analysis, and then relaxed successfully by postannealing. The results showed that the thermal residual stress between Ti3SiC2 and SiC was about on the order of 1 GPa when cooling from 1300°C to 25°C. The thermal residual stresses can be relaxed by the recovery of structure disorders during postannealing. When the SiC/Ti3SiC2/SiC joints postannealed at 900°C, the bending strength reached 156.9 ± 13.5 MPa, which was almost twice of the as‐obtained SiC/Ti3SiC2/SiC joints. Furthermore, the failure occurred at the SiC matrix suggested that both the flexural strength of joining layer and interface were higher than the SiC matrix.  相似文献   
4.
R -curve behavior of Si3N4–BN composites and monolithic Si3N4 for comparison was investigated. Si3N4–BN composites showed a slowly rising R -curve behavior in contrast with a steep R -curve of monolithic Si3N4. BN platelets in the composites seem to decrease the crack bridging effects of rod-shaped Si3N4 grains for small cracks, but enhanced the toughness for long cracks as they increased the crack bridging scale. Therefore, fracture toughness of the composites was relatively low for the small cracks, but it increased significantly to ∼8 MPa·m1/2 when the crack grew longer than 700 μm, becoming even higher than that of the monolithic Si3N4.  相似文献   
5.
The Gaussian-vortex integral model is applied to laboratory data on an advected thermal and field experimental data for a single submerged sewage outfall. The Gaussian-vortex integral model is distinguished from other conventional jet integral models that do not consider vortex-pair formation effects on the behavior of a buoyant jet in the buoyancy- and ambient-dominated regions. The experimental data relative to an advected thermal, measured by a laser-induced fluorescence technique were used for verifications of the numerical model. With the incorporation of vortex-pair formation effects, the simulated results on the bulk characteristics of an advected thermal were in good agreement with the laboratory data, and for applications the simulated surface minimum dilutions also show fairly good agreement with field experimental data. Finally, the numerical model is applied to a horizontal buoyant jet in cross-flow to demonstrate the capability of the numerical model for the buoyant jet that has 3D characteristics.  相似文献   
6.
Fine-grained Mg-PSZ has been fabricated by adding TiC particles. The average cubic grain size was smaller by more than an order of magnitude than without TiC when the TiC content was over 2.5 vol%. Pressurelessly sintered specimens contained numbers of relatively large pores while hot-pressed ones were fully dense. For hot-pressed specimens, addition of TiC particles did not affect the growth behavior of tetragonal precipitates during annealing. With increasing TiC content, the bend strength of hot-pressed specimens increased while the fracture toughness decreased. The bend strength and the fracture toughness of fine-grained Mg-PSZ containing 5 vol% TiC were 980 MPa and 8.2 MPa·m1/2, respectively.  相似文献   
7.
8.
9.
n‐Si/CnH2n + 1/Hg junctions (n = 12, 14, 16 and 18) can be prepared with sufficient quality to assure that the transport characteristics are not anymore dominated by defects in the molecular monolayers. With such organic monolayers we can, using electron, UV and X‐ray irradiation, alter the charge transport through the molecular junctions on n‐ as well as on p‐type Si. Remarkably, the quality of the self‐assembled molecular monolayers following irradiation remains sufficiently high to provide the same very good protection of Si from oxidation in ambient atmosphere as provided by the pristine films. Combining spectroscopic (UV photoemission spectroscopy (UPS), X‐ray photoelectron spectroscopy (XPS), Auger, near edge‐X‐ray absorption fine structure (NEXAFS)) and electrical transport measurements, we show that irradiation induces defects in the alkyl films, most likely C?C bonds and C? C crosslinks, and that the density of defects can be controlled by irradiation dose. These altered intra‐ and intermolecular bonds introduce new electronic states in the highest occupied molecular orbital (HOMO)–lowest unoccupied molecular orbital (LUMO) gap of the alkyl chains and, in the process, dope the organic film. We demonstrate an enhancement of 1–2 orders of magnitude in current. This change is clearly distinguishable from the previous observed difference between transport through high quality and defective monolayers. A detailed analysis of the electrical transport at different temperatures shows that the dopants modify the transport mechanism from tunnelling to hopping. This study suggests a way to extend significantly the use of monolayers in molecular electronics.  相似文献   
10.
Practical applications of high gravimetric and volumetric capacity anodes for next‐generation lithium‐ion batteries have attracted unprecedented attentions, but still faced challenges by their severe volume changes, rendering low Coulombic efficiency and fast capacity fading. Nano and void‐engineering strategies had been extensively applied to overcome the large volume fluctuations causing the continuous irreversible reactions upon cycling, but they showed intrinsic limit in fabrication of practical electrode condition. Achieving high electrode density is particularly paramount factor in terms of the commercial feasibility, which is mainly dominated by the true density and tapping density of active material. Herein, based on finite element method calculation, micron‐sized double passivation layered Si/C design is introduced with restrictive lithiation state, which can withstand the induced stress from Li insertion upon repeated cycling. Such design takes advantage in structural integrity during long‐term cycling even at high gravimetric capacity (1400 mAh g?1). In 1 Ah pouch‐type full‐cell evaluation with high mass loading and electrode density (≈3.75 mAh cm?2 and ≈1.65 g cm?3), it demonstrates superior cycle stability without rapid capacity drop during 800 cycles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号