首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学工业   3篇
能源动力   1篇
无线电   1篇
一般工业技术   1篇
自动化技术   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  1994年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Storing energy in the form of hydrogen is a promising green alternative. Thus, there is a high interest to analyze the status quo of the different storage options. This paper focuses on the large-scale compressed hydrogen storage options with respect to three categories: storage vessels, geological storage, and other underground storage alternatives. In this study, we investigated a wide variety of compressed hydrogen storage technologies, discussing in fair detail their theory of operation, potential, and challenges. The analysis confirms that a techno-economic chain analysis is required to evaluate the viability of one storage option over another for a case by case. Some of the discussed technologies are immature; however, this does not rule out these technologies; rather, it portrays the research opportunities in the field and the foreseen potential of these technologies. Furthermore, we see that hydrogen would have a significant role in balancing intermittent renewable electricity production.  相似文献   
2.
Utilization of industrial waste as substrates for the rhamnolipid synthesis by Pseudomonas aeruginosa is a worthy alternative for conventionally used vegetable oils and fatty acids to reduce the production cost of rhamnolipid. Sunflower acid oil (SAO), a by-product of the oil industry, contains 70% 18:0 fatty acid, with oleic acid as a major component. In this scope, production and analysis of rhamnolipid was successfully demonstrated using SAO as a new substrate. Pseudomonas aeruginosa produced rhamnolipid (a glycolipid biosurfactant) at a maximum concentration of 4.9 g L−1 with 60 g L−1 of SAO in the medium. Structural properties of rhamnolipid biosurfactant are confirmed using thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and fourier transformed infrared spectroscopy (FTIR) analysis. Further surface-active properties of the crude rhamnolipid were evaluated by measuring surface tension and emulsification properties. The synthesized rhamnolipid reduced the surface tension of water to 30.12 mN m−1 and interfacial tension (against heptane) to 0.52 mN m−1. Moreover, rhamnolipid shows the highest emulsification index (above 80%) for vegetable oils. This study confirms the use of SAO as a potential substrate for rhamnolipid production. The synthesized rhamnolipid was incorporated in liquid detergent formulation along with alpha olefin sulfonate (AOS) and sodium lauryl ether sulfate (SLES). The performance properties including foaming and cleaning efficiency of liquid detergent were compared.  相似文献   
3.

With the increasing electric vehicle (EV) penetration, there arises an immediate need for charging infrastructure. In the future, the electrification of transportation will reduce the requirement of existing fuel stations, thereby rendering them obsolete. However, they are best suited to cater to the charging demand of EVs as the drivers are accustomed to the locations and the incremental cost of providing this service will be lower. In this paper, we propose a novel methodology to assess the techno-economic feasibility of retrofitting an existing fuel station with EV charging infrastructure also known as Electric Vehicle Supply Equipment (EVSE). To further enhance the value proposition, the potential of integrating Battery Energy Storage System (BESS) with EV charging infrastructure, which results in the reduction of grid connection costs, is studied. The sustainability of the proposed system is improved with additional onsite Photovoltaic (PV) generation. The proposed methodology is implemented for the UK as a case study. The configurations in this study are designed based on the technical considerations involved in retrofitting a typical fuel station as a fast charging facility for EVs. From the results, it is observed that the configurations with 4 EVSE, 1 BESS, and 8 h of operation and the configuration with 4 EVSE, 1 BESS, and 1 PV system for 8 h of operation are economically viable. The abovementioned configurations are the most economically feasible configurations in terms of the Net Present Value (NPV), Internal Rate of Return (IRR) and the Discounted Payback Period (DPP) amongst the other configurations considered in this study. The proposed methodology indicates that though the connection cost is the dominant factor affecting the feasibility, the use of BESS with or without PV can reduce the connection cost by almost 90% depending on the capacity of BESS. The methodology acts as a decision support tool to select a techno-economically feasible configuration of EVSE, BESS, and PV.

Graphical abstract
  相似文献   
4.
This paper deals with the characterization of extracellular thermostable xylanase produced by Chaetomium globosum, an ascomycete fungus. The crude extracellular enzyme was found to have temperature and pH optima of 60°C and 5·0 respectively. The enzyme hydrolyses xylan to a mixture of xylo-oligomers. Xylobiose and xylose are the major breakdown products.  相似文献   
5.
Iron sulfide nanomaterials were prepared by the solvothermal decomposition of two single source precursors i.e. [FeCl2(cinnamtscz)2] (1) (cinnamtscz?=?cinnamaldehyde thiosemicarbazone) and [FeCl2(benztscz)2] (2) (benztscz?=?benzaldehyde thiosemicarbazone) at different temperatures of 230 and 300 °C in the presence of oleylamine. Powder X-ray diffractometry shows the formation of the pyrrhotite phase at both reaction temperatures. The solvothermal decomposition of [FeCl2(cinnamtscz)2] and [FeCl2(benztscz)2] at 230 °C produced iron sulfide nanoparticles in the form of spheres. When the temperature was increased to 300 °C, particles in the form of hexagons and nanorods were obtained. Furthermore, the photocatalytic activities of all the four iron sulfide nanomaterials were tested for the degradation of methylene blue under visible light irradiation. Amongst all the materials, nanospheres of iron sulfide obtained by the solvothermal decomposition of [FeCl2(benztscz)2] at 230 °C showed the highest photocatalytic efficiency (88.40%).  相似文献   
6.
Apart from direct detection of the infecting organisms or biomarker of the pathogen itself, surrogate host markers are also useful for sensitive and early diagnosis of pathogenic infections. Early detection of pathogenic infections, discrimination among closely related diseases with overlapping clinical manifestations, and monitoring of disease progression can be achieved by analyzing blood biomarkers. Therefore, over the last decade large numbers of proteomics studies have been conducted to identify differentially expressed human serum/plasma proteins in different infectious diseases with the intent of discovering novel potential diagnostic/prognostic biomarkers. However, in-depth review of the literature indicates that many reported biomarkers are altered in the same way in multiple infectious diseases, regardless of the type of infection. This might be a consequence of generic acute phase reactions, while the uniquely modulated candidates in different pathogenic infections could be indicators of some specific responses. In this review article, we will provide a comprehensive analysis of differentially expressed serum/plasma proteins in various infectious diseases and categorize the protein markers associated with generic or specific responses. The challenges associated with the discovery, validation, and translational phases of serum/plasma biomarker establishment are also discussed.  相似文献   
7.
The emerging adoption of wireless communications on surface transportation systems has generated extensive interest among researchers over the last several years. Innovative inter-vehicular communications and vehicle-to-infrastructure communications achieve road traffic safety, ecstatic driving and delightful travelling experiences. Multi-hop information dissemination in vehicular ad hoc networks is challenged by high mobility and frequent disconnections of wireless nodes. This paper presents a new routing scheme for Highway/Freeway VANETs, which consists of a unicast destination discovery process, a robust forward node selection mechanism and a positional hello mechanism. In this paper, no dedicated path is framed in order to prevent frequent path maintenance. In addition, the avoidance of flooding and location services substantially reduces the control overhead. Positional hello scheme ensures connectivity and diminishes control overhead concurrently. Simulation results signify the benefits of the proposed routing strategy (i.e. DDOR) has higher packet delivery ratio, reduced routing overhead and shorter delay compared with previous works.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号