首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   5篇
电工技术   1篇
化学工业   19篇
金属工艺   1篇
机械仪表   2篇
建筑科学   2篇
能源动力   5篇
轻工业   8篇
无线电   11篇
一般工业技术   16篇
冶金工业   1篇
自动化技术   19篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   2篇
  2018年   5篇
  2017年   9篇
  2016年   5篇
  2015年   7篇
  2014年   6篇
  2013年   7篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  1997年   1篇
  1991年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
1.
The case-based learning (CBL) approach has gained attention in medical education as an alternative to traditional learning methodology. However, current CBL systems do not facilitate and provide computer-based domain knowledge to medical students for solving real-world clinical cases during CBL practice. To automate CBL, clinical documents are beneficial for constructing domain knowledge. In the literature, most systems and methodologies require a knowledge engineer to construct machine-readable knowledge. Keeping in view these facts, we present a knowledge construction methodology (KCM-CD) to construct domain knowledge ontology (i.e., structured declarative knowledge) from unstructured text in a systematic way using artificial intelligence techniques, with minimum intervention from a knowledge engineer. To utilize the strength of humans and computers, and to realize the KCM-CD methodology, an interactive case-based learning system(iCBLS) was developed. Finally, the developed ontological model was evaluated to evaluate the quality of domain knowledge in terms of coherence measure. The results showed that the overall domain model has positive coherence values, indicating that all words in each branch of the domain ontology are correlated with each other and the quality of the developed model is acceptable.  相似文献   
2.
Thin films of Praseodymium doped AlN are deposited on silicon (111) substrates at 77 K and 950 K by rf magnetron sputtering method. About 500–1000 nm thick films are grown at 100–200 watts RF power and 5–8 mTorr nitrogen, using a metal target of Al with Pr. X-rays diffraction results show that films deposited at 77 K are amorphous and those deposited at 950 K are crystalline. Cathodoluminescence studies are performed at room temperature and luminescence peaks are observed in a wide range from ultraviolet to infrared region. The most intense peak is obtained in green at 526 nm from amorphous films as a result from 3P13H5 transition. In crystalline films the intense peak was obtain in red at 648 nm as a result from 3P03F2 transition. Films are thermally activated at 1300 K for half an hour in a nitrogen atmosphere. Thermal activation enhances the intensity of luminescence. Two peaks at 488 nm and 505 nm merged after thermal activation, giving rise to a single peak at 495 nm.  相似文献   
3.
Autonomous mapping of HL7 RIM and relational database schema   总被引:1,自引:0,他引:1  
Healthcare systems need to share information within and across the boundaries in order to provide better care to the patients. For this purpose, they take advantage of the full potential of current state of the art in healthcare standards providing interoperable solutions. HL7 V3 specification is an international message exchange and interoperability standard. HL7 V3 messages exchanged between healthcare applications are ultimately recorded into local healthcare databases, mostly in relational databases. In order to bring these relational databases in compliance with HL7, mappings between HL7 RIM (Reference Information Model) and relational database schema are required. Currently, RIM and database mapping is largely performed manually, therefore it is tedious, time consuming, error prone and expensive process. It is a challenging task to determine all correspondences between RIM and schema automatically because of extreme heterogeneity issues in healthcare databases. To reduce the amount of manual efforts as much as possible, autonomous mapping approaches are required. This paper proposes a technique that addresses the aforementioned mapping issue and aligns healthcare databases to HL7 V3 RIM specifications. Furthermore, the proposed technique has been implemented as a working application and tested on real world healthcare systems. The application loads the target healthcare schema and then identifies the most appropriate match for tables and the associated fields in the schema by using domain knowledge and the matching rules defined in the Mapping Knowledge Repository. These rules are designed to handle the complexity of semantics found in healthcare databases. The GUI allows users to view and edit/re-map the correspondences. Once all the mappings are defined, the application generates Mapping Specification, which contains all the mapping information i.e. database tables and fields with associated RIM classes and attributes. In order to enable the transactions, the application is facilitated with the autonomous code generation from the Mapping Specification. The Code Generator component focuses primarily on generating custom classes and hibernate mapping files against the runtime system to retrieve and parse the data from the data source—thus allows bi-directional HL7 to database communication, with minimum programming required. Our experimental results show 35–65% accuracy on real laboratory systems, thus demonstrating the promise of the approach. The proposed scheme is an effective step in bringing the clinical databases in compliance with RIM, providing ease and flexibility.  相似文献   
4.
Thermoelectric properties of two antiperovskites SbNCa3 and BiNCa3 are calculated using first principles calculations. High values of Seebeck coefficients are observed for these materials. Electrical and thermal conductivities are also calculated. Increase in thermal conductivity and decrease in electrical conductivity are found with increasing temperature. The maximum values of thermal conductivity are 92×1014  W/m K s and 88×1014  W/m K s for SbNCa3 and BiNCa3 respectively at a temperature of 900 K. The peak values of 5×1020/Ω m s and 5.2×1020/Ω m s are achieved for n-type SbNCa3 and BiNCa3 respectively at a temperature of 300 K. Figure of merit is achieved for these materials at room temperature which shows that these materials can be useful for thermoelectric devices and alternative energy sources.  相似文献   
5.
Neural Computing and Applications - A lot of different methods are being opted for improving the educational standards through monitoring of the classrooms. The developed world uses Smart...  相似文献   
6.
Wireless Personal Communications - The development of Smart Home Controllers has seen rapid growth in recent years, especially for smart devices, that can utilize the Internet of Things (IoT)....  相似文献   
7.
A growing trend within nanomedicine has been the fabrication of self‐delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco‐friendly conditions. This study reports on green synthesis of silica nanoparticles (Si‐NPs) using Azadirachta indica leaves extract as an effective chelating agent. X‐ray diffraction analysis and Fourier transform‐infra‐red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100–170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si‐NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si‐NPs have great potential in nano‐drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano‐drug delivery.Inspec keywords: silicon compounds, nanofabrication, nanomedicine, drug delivery systems, nanoparticles, X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopyOther keywords: nanosilica, streptomycin, nanoscale drug delivery, nanomedicine, silica nanoparticles, Azadirachta indica leaves extract, X‐ray diffraction analysis, Fourier transform‐infrared spectroscopy, scanning electron microscopy, cetyltrimethyl ammonium bromide, SiO2   相似文献   
8.
To grapple with multidrug resistant bacterial infections, implementations of antibacterial nanomedicines have gained prime attention of the researchers across the globe. Nowadays, zinc oxide (ZnO) at nano‐scale has emerged as a promising antibacterial therapeutic agent. Keeping this in view, ZnO nanostructures (ZnO‐NS) have been synthesised through reduction by P. aphylla aqueous extract without the utilisation of any acid or base. Structural examinations via scanning electron microscopy (SEM) and X‐ray diffraction have revealed pure phase morphology with highly homogenised average particle size of 18 nm. SEM findings were further supplemented by transmission electron microscopy examinations. The characteristic Zn–O peak has been observed around 363 nm using ultra‐violet–visible spectroscopy. Fourier‐transform infrared spectroscopy examination has also confirmed the formation of ZnO‐NS through detection of Zn–O bond vibration frequencies. To check the superior antibacterial activity of ZnO‐NS, the authors'' team has performed disc diffusion assay and colony forming unit testing against multidrug resistant E. coli, S. marcescens and E. cloacae. Furthermore, protein kinase inhibition assay and cytotoxicity examinations have revealed that green fabricated ZnO‐NS are non‐hazardous, economical, environmental friendly and possess tremendous potential to treat lethal infections caused by multidrug resistant pathogens.Inspec keywords: nanomedicine, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, scanning electron microscopy, X‐ray diffraction, antibacterial activity, transmission electron microscopy, particle size, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, enzymes, biochemistry, molecular biophysics, microorganisms, drugs, toxicology, bonds (chemical), semiconductor growth, nanofabrication, vibrational modesOther keywords: green synthesised zinc oxide nanostructures, Periploca aphylla extract, antibacterial potential, multidrug resistant pathogens, multidrug resistant bacterial infections, antibacterial nanomedicines, P. aphylla aqueous extract, structural examinations, scanning electron microscopy, X‐ray diffraction, pure phase morphology, homogenised average particle size, SEM, transmission electron microscopy, Fourier‐transform infrared spectroscopy, bond vibration frequency, antibacterial activity, disc diffusion assay, colony forming unit testing, S. marcescens, E. cloacae, E. coli, ultraviolet‐visible spectroscopy, protein kinase inhibition assay, cytotoxicity, lethal infections, ZnO  相似文献   
9.
The large number of new bug reports received in bug repositories of software systems makes their management a challenging task.Handling these reports manually is time consuming,and often results in delaying the resolution of important bugs.To address this issue,a recommender may be developed which automatically prioritizes the new bug reports.In this paper,we propose and evaluate a classification based approach to build such a recommender.We use the Na¨ ve Bayes and Support Vector Machine (SVM) classifiers,and present a comparison to evaluate which classifier performs better in terms of accuracy.Since a bug report contains both categorical and text features,another evaluation we perform is to determine the combination of features that better determines the priority of a bug.To evaluate the bug priority recommender,we use precision and recall measures and also propose two new measures,Nearest False Negatives (NFN) and Nearest False Positives (NFP),which provide insight into the results produced by precision and recall.Our findings are that the results of SVM are better than the Na¨ ve Bayes algorithm for text features,whereas for categorical features,Na¨ ve Bayes performance is better than SVM.The highest accuracy is achieved with SVM when categorical and text features are combined for training.  相似文献   
10.
There is an extensive possibility of improving characteristics of fibers used in hard tissue engineering, being hydrophobic and less osteoconductive, resulting in the dynamic growth of new tissues. The current work focuses on the fabrication of nanofibers incorporated with titanium dioxide (TiO2) ''as osteoconductive'' and silver (Ag) ''as self-healing'' nanoparticles (NPs). The incorporation of AgNO3 by in situ method not only helped to impart the antibacterial activity but also changed the contact angle from 81 ± 03° in the case of pristine nanofibers to 74 ± 03°, 61 ± 03°, 50 ± 08°, and 39 ± 1.1°, in the composite scaffolds containing 0.01, 0.03, 0.05, and 0.07 M of Ag salts. The incubation in simulated body fluid at 37°C to induce mineralization on nanofiber scaffolds indicated Ca and P crystals' formation. The antibacterial activity showed significantly more toxicity toward E. coli (8.3 ± 0.9 mm) than S. aureus (1.2 ± 0.1 mm). Biocompatibility studies using MTT assay on the pre-osteoblasts showed that both TiO2 and Ag NPs present in the nanofibers are non-toxic to the bone-like cells. However, results show that a higher concentration of Ag NPs (i.e., 0.07 M) is toxic to cells growing. Finally, all the results suggest that the nanofiber scaffolds have considerable scope for future bone tissue engineering materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号