首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学工业   2篇
轻工业   1篇
一般工业技术   5篇
冶金工业   13篇
自动化技术   4篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2011年   3篇
  2010年   1篇
  2006年   2篇
  2003年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1990年   1篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The impact of digital technology in biometrics is much more efficient at interpreting data than humans, which results in completely replacement of manual identification procedures in forensic science. Because the single modality‐based biometric frameworks limit performance in terms of accuracy and anti‐spoofing capabilities due to the presence of low quality data, therefore, information fusion of more than one biometric characteristic in pursuit of high recognition results can be beneficial. In this article, we present a multimodal biometric system based on information fusion of palm print and finger knuckle traits, which are least associated to any criminal investigation as evidence yet. The proposed multimodal biometric system might be useful to identify the suspects in case of physical beating or kidnapping and establish supportive scientific evidences, when no fingerprint or face information is present in photographs. The first step in our work is data preprocessing, in which region of interest of palm and finger knuckle images have been extracted. To minimize nonuniform illumination effects, we first normalize the detected circular palm or finger knuckle and then apply line ordinal pattern (LOP)‐based encoding scheme for texture enrichment. The nondecimated quaternion wavelet provides denser feature representation at multiple scales and orientations when extracted over proposed LOP encoding and increases the discrimination power of line and ridge features. To best of our knowledge, this first attempt is a combination of backtracking search algorithm and 2D2LDA has been employed to select the dominant palm and knuckle features for classification. The classifiers output for two modalities are combined at unsupervised rank level fusion rule through Borda count method, which shows an increase in performance in terms of recognition and verification, that is, 100% (correct recognition rate), 0.26% (equal error rate), 3.52 (discriminative index), and 1,262 m (speed).  相似文献   
2.
Multimedia Tools and Applications - Identification and authentication are ubiquitous questions which pan across various systems. In certain domains, they are of paramount importance. Like, security...  相似文献   
3.
4.
5.
6.
7.
Oil content and fatty acid composition of 50 spreading peanut types and correlations thereof are reported. There was little variation in oil content (49.7 ± 2.01); among fatty acids, oleic (49.9 ± 12.5) and linoleic (34.4 ± 12.4) showed wider variation. Oleic and linoleic were found to have a very strong negative correlation (?0.942).  相似文献   
8.
Do children and adults use the same cues to judge whether someone is a reliable source of information? In 4 experiments, we investigated whether children (ages 5 and 6) and adults used information regarding accuracy, confidence, and calibration (i.e., how well an informant's confidence predicts the likelihood of being correct) to judge informants' credibility. We found that both children and adults used information about confidence and accuracy to judge credibility; however, only adults used information about informants' calibration. Adults discredited informants who exhibited poor calibration, but children did not. Requiring adult participants to complete a secondary task while evaluating informants' credibility impaired their ability to make use of calibration information. Thus, children and adults may differ in how they infer credibility because of the cognitive demands of using calibration. (PsycINFO Database Record (c) 2011 APA, all rights reserved)  相似文献   
9.
The existence of multiple ferroic orders in the same material and the coupling between them have been known for decades. However, these phenomena have mostly remained the theoretical domain owing to the fact that in single-phase materials such couplings are rare and weak. This situation has changed dramatically recently for at least two reasons: first, advances in materials fabrication have made it possible to manufacture these materials in structures of lower dimensionality, such as thin films or wires, or in compound structures such as laminates and epitaxial-layered heterostructures. In these designed materials, new degrees of freedom are accessible in which the coupling between ferroic orders can be greatly enhanced. Second, the miniaturization trend in conventional electronics is approaching the limits beyond which the reduction of the electronic element is becoming more and more difficult. One way to continue the current trends in computer power and storage increase, without further size reduction, is to use multi-functional materials that would enable new device capabilities. Here, we review the field of multi-ferroic (MF) and magnetoelectric (ME) materials, putting the emphasis on electronic effects at ME interfaces and MF tunnel junctions.  相似文献   
10.
Biometrics has emerged as a powerful technology for person authentication in various scenarios including forensic and civilian applications. Deployment of biometric solutions that use cues from multiple modalities enhances the reliability and robustness of authentication necessary to meet the increasingly stringent security requirements. However, there are two drawbacks typically associated with multimodal biometrics. Firstly, the image acquisition process in such systems is not very user-friendly, primarily due to the time and effort required to capture biometric samples belonging to multiple modalities. Secondly, the overall cost is higher as they employ multiple biometric sensors. To overcome these drawbacks, we employ a single NIR sensor-based image acquisition in the proposed approach for hand-vein recognition. From the input hand image, a palm-vein and four finger-vein subimages are extracted. These images are then enhanced by CLAHE and transformed into illumination invariant representation using center-symmetric local binary pattern (CS-LBP). Further, a hierarchical non-rigid matching technique inspired by the architecture of deep convolutional networks is employed for matching the CS-LBP features. Finally, weighted sum rule-based matching score-level fusion is performed to combine the palm-vein and the four finger-vein modalities. A set of rigorous experiments has been performed on an in-house database collected from the left and right hands of 185 subjects and the publicly available CASIA dataset. The proposed approach achieves equal error rates of 0.13% and 1.21%, and rank-1 identification rates of 100% and 100% on the in-house and CASIA datasets, respectively. Additionally, we compare the proposed approach with the state-of-the-art techniques proposed for vascular biometric recognition in the literature. The important findings are (1) the proposed approach outperforms all the existing techniques considered in this study, (2) the fusion of palm-vein and finger-vein modalities consistently leads to better performance for all the feature extraction techniques considered in this work. (3) Furthermore, our experimental results also suggest that considering the constituent palm-vein and finger-vein images instead of the entire hand-vein images achieves better performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号