首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6390篇
  免费   333篇
  国内免费   9篇
电工技术   95篇
综合类   7篇
化学工业   1892篇
金属工艺   224篇
机械仪表   156篇
建筑科学   326篇
矿业工程   25篇
能源动力   208篇
轻工业   978篇
水利工程   38篇
石油天然气   14篇
无线电   277篇
一般工业技术   1255篇
冶金工业   237篇
原子能技术   91篇
自动化技术   909篇
  2023年   56篇
  2022年   118篇
  2021年   216篇
  2020年   136篇
  2019年   173篇
  2018年   218篇
  2017年   204篇
  2016年   251篇
  2015年   225篇
  2014年   295篇
  2013年   584篇
  2012年   330篇
  2011年   430篇
  2010年   338篇
  2009年   328篇
  2008年   250篇
  2007年   196篇
  2006年   148篇
  2005年   113篇
  2004年   102篇
  2003年   86篇
  2002年   92篇
  2001年   72篇
  2000年   64篇
  1999年   58篇
  1998年   67篇
  1997年   53篇
  1996年   58篇
  1995年   62篇
  1994年   48篇
  1993年   61篇
  1992年   50篇
  1991年   38篇
  1990年   34篇
  1987年   44篇
  1986年   37篇
  1985年   49篇
  1984年   57篇
  1983年   54篇
  1982年   58篇
  1981年   64篇
  1980年   67篇
  1979年   60篇
  1978年   52篇
  1977年   57篇
  1976年   65篇
  1975年   64篇
  1974年   47篇
  1973年   56篇
  1971年   36篇
排序方式: 共有6732条查询结果,搜索用时 24 毫秒
1.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
2.
The aim of this work was to investigate the physical and mechanical performance of architectural polyester (PES)–poly(vinyl chloride) (PVC) membranes exposed to different artificial aging conditions. Two commercially available architectural membranes were chosen as research objects. The durability of the PES/PVC fabrics was evaluated by the loss in mechanical performance, scanning electron microscopy, and X-ray diffraction analysis in order to understand the effect of the degradation agents on the surface of the membranes. The mechanical performance of the PES/PVC membranes was unchanged. Scanning electron microscopy images of the tested materials showed initial cracks after aging. The X-ray fluorescence analysis showed that at the time of aging, the amount of Cl and Si decreased slightly, while Ti decreased by half, and Ca by volume increased twice. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47523.  相似文献   
3.
The SARS-CoV-2 pandemic has created a great demand for a better understanding of the spread of viruses in indoor environments. A novel measurement system consisting of one portable aerosol-emitting mannequin (emitter) and a number of portable aerosol-absorbing mannequins (recipients) was developed that can measure the spread of aerosols and droplets that potentially contain infectious viruses. The emission of the virus from a human is simulated by using tracer particles solved in water. The recipients inhale the aerosols and droplets and quantify the level of solved tracer particles in their artificial lungs simultaneously over time. The mobile system can be arranged in a large variety of spreading scenarios in indoor environments and allows for quantification of the infection probability due to airborne virus spreading. This study shows the accuracy of the new measurement system and its ability to compare aerosol reduction measures such as regular ventilation or the use of a room air purifier.  相似文献   
4.
With the goal to produce a hard and tough coating intended for tribological applications, CrAlN/TiSiN nanolayer coating was prepared by alternative deposition of CrAlN and TiSiN layers. In the first part of the article, a detailed study of phase composition, microstructure, and layer structure of CrAlN/TiSiN coating is presented. In the second part, its mechanical properties, fracture and tribological behavior are compared to the nanocomposite TiSiN coating. An industrial magnetron sputtering unit was used for coating deposition. X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used for compositional and microstructural analysis. Mechanical properties and fracture behavior were studied by instrumented indentation and focused ion beam techniques. Tribological properties were evaluated by ball-on-disk test in a linear reciprocal mode. A complex layer structure was found in the nanolayer coating. The TiSiN layers were epitaxially stabilized inside the coating which led to formation of dislocations at interfaces, to introduction of disturbances in the coating growth, and as a result, to development of fine-grained columnar microstructure. Indentation load required for the onset of fracture was twice lower for the nanolayer CrAlN/TiSiN, compared to the nanocomposite TiSiN coating. This agrees very well with their mechanical properties, with H3/E2 being twice higher for the TiSiN coating. However, the nanolayer coating experienced less severe damage, which had a strong impact on tribological behavior. A magnitude of order lower wear rate and four times lower steady state friction coefficient were found for the nanolayer coating.  相似文献   
5.
Deshmukh  P.  Sar  S. K.  Smječanin  N.  Nuhanović  M.  Lalwani  R. 《Radiochemistry》2022,64(4):532-542
Radiochemistry - Magnetically modified waste bark of the Aegle marmelos tree was prepared by using green synthesis method and was used in a batch system for U(VI) removal from aqueous solution. The...  相似文献   
6.
This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.  相似文献   
7.
Volumetric mass transfer coefficients, kLa, just as power input are considered as essential parameters for mechanically agitated gas‐liquid contactors in relation to their optimization and design. The knowledge of power input is crucial for the prediction of other mass transfer characteristics. A power input correlation is created for the industrial design of the process with a non‐coalescent batch that would be appropriate for a broad range of operational conditions. The recommended resulting correlation is able to predict the power input for impellers in industrial‐scale design for a significant scope of operational conditions.  相似文献   
8.
9.
The fission yeast Schizosaccharomyces pombe is an important model organism for the study of fundamental questions in eukaryotic cell and molecular biology. A plethora of cellular processes are membrane associated and/or dependent on the proper functioning of cellular membranes. Phospholipids are not only the basic building blocks of cellular membranes; they also serve as precursors to numerous signaling molecules. In this review, we describe the biosynthetic pathways leading to major S. pombe phospholipids, how these pathways are regulated, and what is known about degradation and turnover of fission yeast phospholipids. This review also addresses the synthesis, regulation and the role of water-soluble phospholipid precursors. The last chapter of the review is devoted to the use of S. pombe for the biotechnological production of value-added lipid molecules.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号