首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   3篇
化学工业   6篇
能源动力   1篇
冶金工业   1篇
自动化技术   1篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2014年   1篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Polymeric fibers are prepared by using electric field driven fiber production technology—electrospinning and pressure driven fiber production technology—pressurized gyration. Fibers of four different polymers: polyvinylidene fluoride (PVDF), poly(methyl methacrylate (PMMA), poly(N‐isopropylacrylamide), and polyvinylpyridine (PVP), are spun by both techniques and differences are analyzed for their suitability as drug carriers. The diameters of electrospun fibers are larger in some cases (PVDF and PMMA), producing fibers with lower surface area. Pressurized gyration allows for a higher rate of fiber production. Additionally, drug‐loaded PVP fibers are prepared by using two poorly water‐soluble drugs (Amphotericin B and Itraconazole). In vitro dissolution studies show differences in release rate between the two types of fibers. Drug‐loaded gyrospun fibers release the drugs faster within 15 min compared to the drug‐loaded electrospun fibers. The findings suggest pressurized gyration is a promising and scalable approach to rapid fiber production for drug delivery when compared to electrospinning.  相似文献   
2.
3.
4.
A numerical study has been carried out to investigate the temperature distribution and the natural convection heat transfer in axisymmetric two-dimensional vertical saturated porous cylinder with steady state laminar flow. A comparison between two situations is done under the effect of MHD (magnetohydrodynamics) and radiation. In the two situations, the vertical walls of the cylinder are cooled with constant wall temperature and a constant heat generation subjected along the centerline of the cylinder. The first case for cylinder with insulated upper surface and cooled bottom surface while the second case for cylinder with cooled upper surface and insulated bottom surface. The governing equations used are continuity, momentum and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using the MATLAB-7 programming. The parameters affected the system are Rayleigh number ranging within (102≤ Ra ≤104), radiation parameter (0≤ Rd ≤ 2) and magnetohydrodynamics MHD (Mn) (0 ≤ Mn≤ 2).The results show that the temperature of Case 1 is more than that in Case 2 at constant Ra, Mn and Rd while the value of the stream in Case 2 is greater than that in Case 1. Nu increase with the increase of Rd and increasing Mn caused the temperature to increase and the streamline dropped while Nu decreased. A correlation has been set up to give the average Nusselt number variation with Ra, Rd and Mn for which the results are found to be in good agreement with previously published researches.  相似文献   
5.
Pressurized gyration and its sister processes are novel methods to produce polymeric fibers. Potential applications for such fibers include wound dressings, tissue engineering scaffolds, and filters. This study reports on a pressurized gyration technique that employs pressured N2 gas to prepare biocompatible wound dressing bandages from bacterial cellulose and poly (methylmethacrylate) polymer blended with alloyed antimicrobial nanoparticles. Resulting bandages are manufactured with high product yield and characterized for their chemical, physical, and mechanical properties. Increased density in solutions with additional antimicrobial nanoparticles results in increased fiber diameters. Also, addition of antimicrobial nanoparticles enhances ultimate tensile strength and Young's modulus of the bandages. Typical molecular bonding in the bandages is confirmed by Fourier‐transform infrared spectroscopy, with peaks that have higher intensity and narrowing points being caused by additional antimicrobial nanoparticles. More so, the cellular response to the bandages and the accompanying antimicrobial activity are studied in detail by in vitro co‐culture of Staphylococcus aureus and keratinocytes. Antimicrobial nanoparticle‐loaded bandage samples show increased cell viability and bacteria inhibition during co‐culture and are found to have a promising future as epidermal wound dressing materials.  相似文献   
6.
In this invited feature article, the invention of pressurized gyration in 2013 and its subsequent development into sister processes such as pressurized melt gyration, infusion gyration, and pressure‐coupled infusion gyration is elucidated. The fundamentals of these processes are discussed, elucidating how these novel methods can be used to facilitate mass production of polymeric fibers and other morphologies. The effects of the main system parameters: rotational speed and gas pressure, are discussed along with the influence of solution parameters such as viscosity and polymer chain entanglement. The effect of flow of material into the gyrator in infused gyration is also illustrated. Examples of many polymers that have been subjected to these processes are discussed and the applications of resulting products are illustrated under several different research themes such as, tissue engineering, drug delivery, diagnostics, hydrogels, filtration, and wound healing.  相似文献   
7.
Ali  Javid  Jubair  Mohd  Ali  Faeem 《Engineering with Computers》2020,38(1):693-702

In this paper, we prove that F iterative scheme is almost stable for weak contractions. Further, we prove convergence results for weak contractions as well as for generalized non-expansive mappings due to Hardy and Rogers via F iterative scheme. We also prove that F iterative scheme converges faster than the some known iterative schemes for weak contractions. An illuminative numerical example is formulated to support our assertion. Finally, utilizing our main result the solution of nonlinear fractional differential equation is approximated.

  相似文献   
8.
9.
As a facile, efficient, and low-cost fiber manufacturing strategy, pressurized gyration/rotation (PG) is attracting tremendous attention. This review provides a comprehensive introduction to the working setups, fundamental principles, processing parameters, and material feed properties of this technology. The characterizations of products prepared by this technology and their wide application fields are summarized. The development potentials and broader application prospects of PG are discussed. PG holds significant promise for the scale-up of ultrafine fiber manufacturing.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号